两个基本计数原理(上课用)ppt课件.ppt





《两个基本计数原理(上课用)ppt课件.ppt》由会员分享,可在线阅读,更多相关《两个基本计数原理(上课用)ppt课件.ppt(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 两个基本计数原理两个基本计数原理 世界杯足球赛共有32个队参赛它们先分成8个小组进行循环赛,决出16强,这16个队按确定的程序进行淘汰赛后,最后决出冠亚军,此外还决出了第三、第四名问一共安排了多少场比赛? 要回答这个问题,就要用到排列、组合的知识在运用排列、组合方法时,经常要用到从甲地到乙地,有从甲地到乙地,有3 3条公路,条公路,2 2条铁路,某人条铁路,某人要从甲地到乙地,共有多少种不同的走法?要从甲地到乙地,共有多少种不同的走法?从甲地到乙地,有从甲地到乙地,有3 3条道路,从乙地到丙地有条道路,从乙地到丙地有2 2条道路,那么从甲地经乙地到丙地共有多少种不同条道路,那么从甲地经乙地到
2、丙地共有多少种不同的走法的走法 ?从甲地到乙地,有从甲地到乙地,有3 3条公路,条公路,2 2条铁路,条铁路,某人要从甲地到乙地,共有多少种不同的走法?某人要从甲地到乙地,共有多少种不同的走法? 因为每一种走法都能完成从甲地到乙地这件因为每一种走法都能完成从甲地到乙地这件事,有事,有3 3条公路,条公路,2 2条铁路,所以共有:条铁路,所以共有: 3 32 25 5 (种)(种)甲地甲地乙地乙地公路1公路2公路3铁路1铁路2 完成一件事,有完成一件事,有n类办法类办法. 在第在第1类办法中有类办法中有m1种不同的方法,种不同的方法,在第在第2类方法中有类方法中有m2种不同的方法,种不同的方法,
3、在第在第n类方法中有类方法中有mn种不同的方法,种不同的方法,则完成这件事共有则完成这件事共有 : 2)首先要根据具体的问题确定一个分类标准,在分)首先要根据具体的问题确定一个分类标准,在分类标准下进行分类,然后对每类方法计数类标准下进行分类,然后对每类方法计数.1)各类办法之间相互独立)各类办法之间相互独立,都能独立的完成这件事都能独立的完成这件事,要,要计算方法种数计算方法种数,只需将各类方法数相加。只需将各类方法数相加。N= m1+m2+ + mn 种不同的方法种不同的方法从甲地到乙地,有从甲地到乙地,有3 3条道路,从乙地到丙地有条道路,从乙地到丙地有2 2条道路,那么从甲地经乙地到丙
4、地共有多少种不同条道路,那么从甲地经乙地到丙地共有多少种不同的走法的走法 ? 这个问题与前一个问题不同在这个问题中,必须经过先从甲地到乙地、再从乙地到丙地两个步必须经过先从甲地到乙地、再从乙地到丙地两个步骤骤,才能从甲地到丙地 因为从甲地到乙地从甲地到乙地有3种走法,从乙地到丙地从乙地到丙地有2种走法,所以从甲地到丙地,共有不同的走法: 3 32 26 6 (种)甲地甲地乙地乙地丙地丙地 完成一件事,需要分成完成一件事,需要分成n个步骤。个步骤。做第做第1步有步有m1种不同的方法,种不同的方法,做第做第2步有步有m2种不同的方法,种不同的方法, ,做第做第n步有步有mn种不同的方法,种不同的方
5、法,则完成这件事共有则完成这件事共有 2)首先要根据具体问题的特点确定一个分步的标准,)首先要根据具体问题的特点确定一个分步的标准,然后对每步方法计数然后对每步方法计数.1)各个步骤相互依存)各个步骤相互依存,只有各个步骤都完成了只有各个步骤都完成了,这件事这件事才算完成才算完成,将各个步骤的方法数相乘得到完成这件事的将各个步骤的方法数相乘得到完成这件事的方法总数方法总数N= m1m2 mn种不同的方法种不同的方法例例1.1. 书架第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架中取1本书,有多少种不同取法?有3类方法,根据分类加法计数原理N=
6、4+3+2=9(2)从书架第1,2,3层各取1本书,有多少种不同取法?分3步完成,根据分步乘法计数原理N=432=24练习练习 要从甲、乙、丙3 3幅不同的画中选出2 2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?分分两两步步完完成成左边左边右边右边甲甲乙乙丙丙乙乙丙丙甲甲丙丙甲甲乙乙3 32 2第一步第一步第二步第二步62381346443AB该电路从该电路从A A到到B B共有多少条不同的线路可通电?共有多少条不同的线路可通电?分类完成分步完成解解: 从总体上看由从总体上看由A到到B的通电线路可分二类的通电线路可分二类, 第一类第一类, m1 = 4 条条 第二类第二类,
7、 m3 = 22 = 4, 条条 所以所以, 根据加法原理根据加法原理, 从从A到到B共有共有 N = 4 + 4 = 8 条不同的线路可通电条不同的线路可通电.ABm1m2mn.ABm1m2mn点评点评: :乘法原理乘法原理看成看成“串联电路串联电路”加法原理加法原理看成看成“并联电路并联电路”; 如图如图, ,从甲地到乙地有从甲地到乙地有2 2条路可通条路可通, ,从乙地到从乙地到丙地有丙地有3 3条路可通条路可通; ;从甲地到丁地有从甲地到丁地有4 4条路可通条路可通, , 从丁地从丁地到丙地有到丙地有2 2条路可通。从甲地到丙地共有多少种不同的条路可通。从甲地到丙地共有多少种不同的走法
8、?走法?练习解解: :从总体上看从总体上看,由甲到丙有两类不同的走法由甲到丙有两类不同的走法, 第一类第一类, 由甲经乙去丙由甲经乙去丙,又需分两步又需分两步, 所以所以 m1 = 23 = 6 种不同的走法种不同的走法; 第二类第二类, 由甲经丁去丙由甲经丁去丙,也需分两步也需分两步, 所以所以 m2 = 42 = 8 种不同的走法种不同的走法; 所以从甲地到丙地共有所以从甲地到丙地共有 N = 6 + 8 = 14 种不同的走法。种不同的走法。分类计数原理分类计数原理分步计数原理分步计数原理相同点相同点不同点不同点注意点注意点用来计算用来计算“完成一件事完成一件事”的方法种数的方法种数每类
9、每类方案中的每一方案中的每一种方法都能种方法都能_ _ 完成这件事完成这件事每步每步_才才算完成这件事情算完成这件事情(每步中的每一种(每步中的每一种方法方法不能独立不能独立完成完成这件事)这件事)类类类类相加相加步步步步相乘相乘分类分类完成完成分步分步完成完成例例3 我们把一元硬币有国徽的一面叫做正面,我们把一元硬币有国徽的一面叫做正面,有币值的一面叫做反面有币值的一面叫做反面.现依次抛出现依次抛出5枚一元枚一元硬币,按照抛出的顺序得到一个由硬币,按照抛出的顺序得到一个由5个个“正正”或或“反反”组成的序列,如组成的序列,如“正、反、反、反、正、反、反、反、正正”.问:一共可以得到多少个这样
10、的序列?问:一共可以得到多少个这样的序列?322222225N思考:一次扔出思考:一次扔出5个相同的一元硬币个相同的一元硬币.问:一问:一共可以得到多少个这样的序列?共可以得到多少个这样的序列?例例1 用用0,1,2,3,4,5这六个数字这六个数字,(1)可以组成多少个各位数字不允许重复的三位的奇数可以组成多少个各位数字不允许重复的三位的奇数?(2)可以组成多少个各位数字不允许重复的三位的偶数可以组成多少个各位数字不允许重复的三位的偶数?(3)可以组成多少个各位数字不重复的小于可以组成多少个各位数字不重复的小于1000的自然的自然数数?一、排数字问题一、排数字问题48443) 1 (N1314
11、55556)3(N5244245)2(N特殊位置特殊元素优先考虑特殊位置特殊元素优先考虑 一个三位密码锁一个三位密码锁, ,各位上数字由各位上数字由0,1,2,3,4,5,0,1,2,3,4,5,6,7,8,96,7,8,9十个数字组成十个数字组成, ,可以设置多少种三位数的密码可以设置多少种三位数的密码( (各位上的数字允许重复各位上的数字允许重复)?)?首位数字不为首位数字不为0 0的密码数是多的密码数是多少少? ?首位数字是首位数字是0 0的密码数又是多少的密码数又是多少? ? 分析分析: : 按密码位数按密码位数,从左到右从左到右依次设置第一位、第二位、第三依次设置第一位、第二位、第三
12、位位, 需分为三步完成需分为三步完成; 第一步第一步, m1 = 10; 第二步第二步, m2 = 10; 第三步第三步, m3 = 10. 根据乘法原理根据乘法原理, 共可以设置共可以设置 N = 101010 = 103 种三位数的密码。种三位数的密码。练习首位数字不为首位数字不为0 0的密码数的密码数? ?首位数字是首位数字是0 0的密码数的密码数? ? 一个三位密码锁一个三位密码锁, ,各位上数字由各位上数字由0,1,2,3,4,5,0,1,2,3,4,5,6,7,8,96,7,8,9十个数字组成十个数字组成, ,可以设置多少种三位数的密码可以设置多少种三位数的密码( (各位上的数字允
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 两个 基本 计数 原理 上课 ppt 课件

限制150内