【数学】11《回归分析的基本思想及其初步应用》课件(新人教A版选修1—2).ppt
《【数学】11《回归分析的基本思想及其初步应用》课件(新人教A版选修1—2).ppt》由会员分享,可在线阅读,更多相关《【数学】11《回归分析的基本思想及其初步应用》课件(新人教A版选修1—2).ppt(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、统计案例第一章.?,?,:,等等等等性性相相关关关关系系线线体体重重之之间间是是否否存存在在身身高高和和一一个个重重要要因因素素肥肥胖胖是是影影响响人人类类健健康康的的与与患患肺肺癌癌有有关关系系吗吗吸吸烟烟胁胁人人类类性性命命的的一一种种疾疾病病肺肺癌癌是是严严重重威威面面的的问问题题我我们们经经常常会会遇遇到到类类似似下下在在现现实实中中.,)(,)(,以以得得到到最最可可靠靠的的结结论论当当的的方方法法分分析析数数据据然然后后用用恰恰的的方方法法数数据据并并确确定定获获取取变变量量值值题题决决的的问问用用怎怎样样的的量量来来描描述述要要解解是是什什么么总总体体象象必必须须明明确确问问题题
2、涉涉及及的的对对为为了了回回答答这这些些问问题题.,.,的的作作用用认认识识统统计计方方法法在在决决策策中中想想的的基基本本思思并并初初步步了了解解独独立立性性检检验验其其应应用用析析方方法法及及进进一一步步讨讨论论线线性性回回归归分分的的讨讨论论通通过过对对典典型型例例案案我我们们将将在在此此基基础础上上章章中中本本归归等等基基本本知知识识样样本本估估计计总总体体、线线性性回回用用我我们们学学习习过过关关于于抽抽样样、在在必必修修模模块块中中其初步应用回归分析的基本思想及1 . 1.,3.)analysisregression(.,行行预预报报并并用用回回归归直直线线方方程程进进直直线线方方
3、程程求求回回归归点点图图其其步步骤骤为为画画散散进进行行了了研研究究的的方方法法系系的的变变量量利利用用回回归归分分析析性性相相关关关关我我们们对对两两个个具具有有线线中中数数学学在在方方法法析析的的一一种种常常用用分分系系的的两两个个变变量量进进行行统统计计是是对对具具有有相相关关关关析析回回归归分分定定性性关关系系而而相相关关关关系系是是一一种种非非确确性性关关系系函函数数关关系系是是一一种种确确定定我我们们知知道道:,y,x,y,x,y,xnn2211二乘估计公式分别为二乘估计公式分别为截距和斜率的最小截距和斜率的最小我们知道其回归方程的我们知道其回归方程的关系的数据关系的数据对于一组具
4、有线性相关对于一组具有线性相关探究探究 1xbya 2,xxyyxxbn1i2in1iii111,.,nniiiixx yyx yn其中称为样样本本点点的的中中心心.心心回回归归直直线线过过样样本本点点的的中中 1、已知回归直线的斜率的估计值是、已知回归直线的斜率的估计值是1.23,样本点的中心为样本点的中心为(4,5),则回归直线的方程,则回归直线的方程是是( ) A.y=1.23x4 B. y=1.23x+5 C. y=1.23x+0.08 D.y =0.08x+1.23 .11,81所示重数据如表其身高和体名女大学生从某大学中随机选取例5943616454505748kg/1701551
5、65175170157165165cm/87654321体体重重身身高高编编号号.cm172,的的女女大大学学生生的的体体重重并并预预报报一一名名身身高高为为归归方方程程身身高高预预报报她她的的体体重重的的回回求求根根据据一一名名女女大大学学生生的的: ) 11 . 1(.,图图作散点体重为因变量真实取身高为自变量因此选据身高预报体重由于问题中要求根解yx11 . 1图xy.,11 . 1画它们之间的关系刻性回归方程以用线因此可线性相关关系较好的重有比高和体身样本点呈条状分布中可以看出从图 .712.85x 849.0y .849.0b,712.85a ,21于是得到回归方程可以得到和根据探究
6、中的公式.kg316.60712.85172849.0y,cm172,预报其体重为由回归方程可以的女大学生对身高为所以11 . 1图xy?.,849.0y,1x,849.0b的强弱它们之间线性相关关系如何描述性相关关系体重与身高具有正的线这表明个单位就增加体重个单位时每增加说明身高是斜率的估计值为关系数的具体计算公式样本相关系的方法两个变量之间线性相关来衡量我们介绍了用相关系数中在必修.r,3.yyxxyyxxrn1in1i2i2in1iii.75.0r,.,0r ;, 1r .,0r;,0r强的线性相关关系时认为两个变量有很大于当通常关系不存在线性相关表明两个变量之间几乎时越接近于性越强明两
7、个变量的线性相关表的绝对值越接近表明两个变量负相关时当表明两个变量正相关时当.,798.0r,有意义的我们建立的回归模型是从而也表明关关系与身高有很强的线性相这表明体重可以计算出在本例中?,?kg316.60cm172其原因是什么其原因是什么不是不是如果如果吗吗是是女大学生的体重一定女大学生的体重一定的的身高身高探究探究.21 . 1.316.60316.60172,位置说明了这一点本点和回归直线的相互中的样图以认为她的体重接近于但一般可是大学生的体重不一定的女身高显然kgkgcm21 . 1图 3, eabxy:,回归模型来表示可用下面的线性所以身高和体重的关系线的附近而只是散布在某一条直线
8、由于所有的样本点不共.y,x,yx,exy,称为预报变量称为预报变量把把称为解释变量称为解释变量因此我们把因此我们把的变化的变化只能解释部分只能解释部分即即共同确定共同确定素素和随机因和随机因的值由的值由在回归模型中在回归模型中与函数关系不同与函数关系不同,.,abeyybxae这里 和 为模型的未知参数 是 与之间的误差通常 为随机变量 称为随机误差随机误差.,yy 取取决决于于随随机机误误差差的的方方差差其其大大小小之之间间的的误误差差的的原原因因之之一一与与真真实实值值值值 .yy ,ba,ba 21,另另一一个个原原因因之之间间误误差差的的与与真真实实值值这这种种误误差差是是引引起起预
9、预报报值值之之间间也也存存在在误误差差和和它它们们与与真真实实值值的的估估计计值值为为截截距距和和斜斜率率和和中中和和由由于于公公式式另另一一方方面面?e的原因是什么的原因是什么产生随机误差项产生随机误差项思考思考.,.,的产生差项误机随所有这些因素都会导致是一种近似的模型型往往只我们选用的线性模另外动、度量误差等食习惯、是否喜欢运例如饮许多其他因素的影响还受身高的影响外一个人的体重值除了受实际上e?,如何衡量预报的精度随机误差那么应该怎样研究它是一个不可观测的量误差的预报真实值是用在线性回归模型中探究yye. n, 2 , 1i , abxyyye,y,x,y,x,y,xiiiiinn221
10、1 相应它们的随机误差为相应它们的随机误差为而言而言对于样本点对于样本点, n, 2 , 1i , a xbyy ye iiiii 其估计值为其估计值为,iiiex y称为相应于点的 残差残差.,e ,e ,e ,.,n21这这方方面面的的分分析析工工作作称称为为在在可可疑疑数数据据判判断断原原始始数数据据中中是是否否存存来来判判断断模模型型拟拟合合的的效效果果可可以以通通过过残残差差然然后后性性回回归归模模型型来来拟拟合合数数据据是是否否可可以以用用线线线线性性相相关关来来粗粗略略判判断断它它们们是是否否相相首首先先要要根根据据散散点点图图系系时时在在研研究究两两个个变变量量间间的的关关 残
11、差分析残差分析.21相应的残差数据重的原始数据以及列出女大学生身高和体表 382.0883.2627.6137.1618.4419.2627.2373.6e 5943616454505748kg/170155165175170157165165cm/87654321残差残差体重体重身高身高编号编号编号编号残差残差31 . 1图.31 . 1.,.残差图坐标的样本编号为横是以图这样作出的图形为等或体重估计值高数据或身可选为样本编号横坐标纵坐标为残差作图时分析残差特性我们可以利用图形来残残差差图图编号编号残差残差31 . 1图.,.,;,.,61,31 .1越高回归方程的预报精确度拟合精度越高说明
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 回归分析的基本思想及其初步应用 11 回归 分析 基本 思想 及其 初步 应用 课件 新人 选修
限制150内