1811探索勾股定理_说课获奖课件.ppt
《1811探索勾股定理_说课获奖课件.ppt》由会员分享,可在线阅读,更多相关《1811探索勾股定理_说课获奖课件.ppt(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、探索勾股定理探索勾股定理说课说课参赛单位 :响水中学 老师:马丽娜版本:人教版版本:人教版年级:八年级(下)年级:八年级(下)一、教材分析一、教材分析y=0y=0说课流程图说课流程图二、教学重、难点二、教学重、难点三、教法与学法分析三、教法与学法分析四、教学过程四、教学过程五、设计说明五、设计说明一、教材分析一、教材分析教材的地位和作用教学目标(一)教材的地位和作用(一)教材的地位和作用 “探索勾股定理”是义务教育课程标准实验教科书八年级(下册)第十八章第一节内容勾股定理的第1课时。“勾股定理”是安排在学生学习了三角形、全等三角形、等腰三角形等有关知识之后,它揭示了直角三角形三边之间的一种美妙
2、关系,将形与数密切联系起来,在几何学中占有非常重要的位置。同时,勾股定理在生产、生活中也有很大的用途。(二)教学目标(二)教学目标教学目标教学目标知识技能目标知识技能目标 过程方法目标过程方法目标情感目标情感目标知识与技能知识与技能: 使学生在探索勾股定理的过程中,掌握直角三角形三边之间的数量关系,学会初步运用勾股定理进行简单的计算,并解决实际问题。过程与方法过程与方法:n 让学生经历用面积法探索勾股定理的过程,体会数形结合的思想,渗透观察,归纳,猜想,验证的数学方法,体验从特殊到一般的逻辑推理过程。情感态度与价值观:情感态度与价值观:n 通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国悠久
3、文化的思想,激励学生发奋学习。二、教学重点、难点二、教学重点、难点n重点:勾股定理的内容及其应用n难点:勾股定理的证明n突破难点的关键:“拼图法”和“面积法”的成功运用三、教法与学法分析:三、教法与学法分析:n教法教法:以引导探索法为主,实验法、讨论法为辅,由浅到深,由特殊到一般。充分利用教具及多媒体等教学手段。n学法学法:引导学生动手操作,自主探索,合作交流。四、教学过程(四、教学过程(5步骤)步骤)一、创设情境引入新课二、动手操作探索新知三、证明猜想得到定理四、应用知识,回归生活五、总结反思,布置作业(一)、创设情境,引入新课(2)一棵树在离地面4米处断裂,树的顶部落在离树跟底部3米处,求
4、这棵树折断前有多高? 抽象出数学问题:n已知一直角三角形的两边,如何求第三边?” 的问题 n在 中,角C是直角,已知AC=4m,BC=3m,求AB?ABCRt4米米3米米 相传相传25002500年前,古希腊著名数学家毕达哥拉年前,古希腊著名数学家毕达哥拉斯从朋友家的地砖铺成的地面上发现了直角三角斯从朋友家的地砖铺成的地面上发现了直角三角形的某种特性,从而找到了答案。同学们形的某种特性,从而找到了答案。同学们, ,我们也我们也来观察下面的地面来观察下面的地面, , 看看你能发现什么看看你能发现什么?是否也是否也和大和大数学家有同样的发现呢数学家有同样的发现呢? ?【】请大家请大家从面积从面积的
5、角度的角度来观察来观察图形:图形: (二)、动手操作,探索新知 【活动1】思考:你能发现各图中三个正方形的面积之间有思考:你能发现各图中三个正方形的面积之间有何关系吗?何关系吗?发现发现: : 以等腰直角三角形两直角边为边以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边长的小正方形的面积的和,等于以斜边为边长的正方形的面积为边长的正方形的面积【活动2】一般直角三角形三边关系的发现ABC图图1-1ABC图图1-2引导学生在格子图上画一个直角边分别为3和4的直角三角形,并以其各边为边长作正方形A、B、C。同时给出图二,让学生小组合作计算图一和图二中正方形A、B、C的面积。图一图一图二
6、图二ABABCC正方形面积间的关系:正方形面积间的关系:SA+SB=SC猜想:直角三角形三边之猜想:直角三角形三边之间的关系,即:间的关系,即:两直角边两直角边的平方和等于斜边的平方。的平方和等于斜边的平方。猜想:命题命题1 : 如果如果直角三角形直角三角形的两直角边长的两直角边长 分别为,斜边长为,那么分别为,斜边长为,那么 222abc222cba拼一拼拼一拼以小组为单位用四个全等的直角三角形不加覆盖能拼成一以小组为单位用四个全等的直角三角形不加覆盖能拼成一个大正方形吗?个大正方形吗?abcabcabcabc(三)证明猜想,得到定理222cba利用计算面积法:S大正方形大正方形=S小正方形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1811 探索 勾股定理 获奖 课件
限制150内