212椭圆的简单几何性质二.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《212椭圆的简单几何性质二.ppt》由会员分享,可在线阅读,更多相关《212椭圆的简单几何性质二.ppt(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.1.2椭圆的简椭圆的简单几何性质单几何性质(2)高二数学高二数学 选修选修1-1 第二章第二章 圆锥曲线与方程圆锥曲线与方程的轨迹。,求点的距离的比是常数的距离和它到直线与定点点例MxlFyxM54425:)0 , 4(),(6,54425:dMFMPMxlMd的轨迹就是集合点的距离,根据题意,到直线是点解:设.54425)4(2xyx由此得,22525922yx简,得将上式两边平方,并化192522yx即所以,点所以,点M的轨迹是长轴、短轴长分别为的轨迹是长轴、短轴长分别为10、6的椭圆。的椭圆。FlxoyMHd的的距距离离和和它它到到定定直直线线,与与定定点点若若点点)0(),(cFy
2、xM思考上面探究问题,并回答下列问题:思考上面探究问题,并回答下列问题:的的距距离离和和它它到到定定直直线线,与与定定点点)若若点点()0(),(3cFyxM 的的,此此时时点点的的距距离离的的比比是是常常数数Mcaaccaxl)0(:2 ?轨轨迹迹还还是是同同一一个个椭椭圆圆吗吗时时,对对应应,定定直直线线改改为为,)当当定定点点改改为为(caylcF2:)0(4 ?的的轨轨迹迹方方程程又又是是怎怎样样呢呢探究:的的轨轨迹迹。,求求点点的的距距离离的的比比是是常常数数Mcaaccaxl)0(:2 (1)用坐标法如何求出其)用坐标法如何求出其轨迹方程轨迹方程,并说出轨迹,并说出轨迹(2)给椭圆
3、下一个新的定义)给椭圆下一个新的定义探究探究、点、点M(x,y)与定点与定点F (c,0)的距离和它到定直线的距离和它到定直线l:x=a2/c 的距离的比是常数的距离的比是常数c/a(ac0),求点求点M 的轨迹。的轨迹。yFFlIxoP=M| acdMF由此得由此得acxcaycx222将上式两边平方,并化简,得将上式两边平方,并化简,得22222222caayaxca设设 a2-c2=b2,就可化成就可化成)0( 12222babyax这是椭圆的标准方程,所以点这是椭圆的标准方程,所以点M的轨迹是长轴、的轨迹是长轴、短轴分别为短轴分别为2a,2b 的椭圆的椭圆M解:设解:设 d是是M到直线
4、到直线l 的距离,根的距离,根据题意,所求轨迹就是集合据题意,所求轨迹就是集合FFlIxoy 由探究可知,当点由探究可知,当点M与一个定点的距离和它到一条定直与一个定点的距离和它到一条定直线的距离线的距离 的比是常数的比是常数 时,这个点的轨时,这个点的轨迹迹 就是椭圆,定点是椭圆的焦点,定直线叫做就是椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线椭圆的准线,常,常数数e是椭圆的离心率。是椭圆的离心率。 此为此为椭圆的第二定义椭圆的第二定义. 10eace 对于椭圆对于椭圆 ,相应于焦点,相应于焦点F(c,0)准线方程是准线方程是 , 根据椭圆的对称性,相应于根据椭圆的对称性,相应于焦点焦点F(
5、-c.0) 准线方程是准线方程是 ,所以椭圆有两条准线。所以椭圆有两条准线。12222byaxcax2cax2椭圆的第一定义与第二定义是相呼应的。椭圆的第一定义与第二定义是相呼应的。定义定义 1图图 形形定义定义 2平面内与平面内与一个定点的距一个定点的距离和它到一条离和它到一条定直线的距离定直线的距离的比是常数的比是常数)10( eace的的点点的的轨轨迹迹。)0 ,()0 ,(21cFcF、焦点:焦点: ),0(),0(21cFcF、焦焦点点: cax2 准线:准线:cay2 准线:准线:、两两个个定定点点1F的距离的和的距离的和2F等于常数(大等于常数(大)的点)的点于于21FF的轨迹。
6、的轨迹。平面内与平面内与由椭圆的第二定义可得到椭圆的几何性质如下:由椭圆的第二定义可得到椭圆的几何性质如下:22222(1)1(0)xyaabxabc 椭圆的准线方程为222221(0)yxaabyabc 椭圆的准线方程为222abcc(2)两准线间的距离为,焦点到相应准线的距离为(3)椭圆的第二定义隐含着条件“定点在定直线外”,否则其轨迹不存在。(4)椭圆离心率的几何意义:由椭圆的第二定义得,“椭圆上一点到焦点的距离与相应准线的距离之比”课堂练习课堂练习1、椭圆、椭圆 上一点到准线上一点到准线 与到焦与到焦点(点(-2,0)的距离的比是)的距离的比是 ( )171122yx211x11112
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 212 椭圆 简单 几何 性质
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内