111正弦定理课件:(PPT).ppt
《111正弦定理课件:(PPT).ppt》由会员分享,可在线阅读,更多相关《111正弦定理课件:(PPT).ppt(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、创设情境一、创设情境1、问题的给出:、问题的给出:2、实际问题转化为数学问题:、实际问题转化为数学问题: 如图,要测量小河两岸如图,要测量小河两岸A,B两个码头的距离。可在小河两个码头的距离。可在小河一侧如在一侧如在B所在一侧,选择所在一侧,选择C,为了算出,为了算出AB的长,可先测出的长,可先测出BC的长的长a,再用经纬仪分别测出,再用经纬仪分别测出B,C的值,那么,根据的值,那么,根据a, B,C的值,能否算出的值,能否算出AB的长。的长。A.B.CaA.B.Ca已知三角形的两个角和一条边,求另一条边。已知三角形的两个角和一条边,求另一条边。ACBcba想一想想一想? ?中在一个直角三
2、角形ABCAsincaAacsinBsincbBbcsinCsincc1Cccsin问题问题 (2 2)上述结论是否可推广到任意三角形)上述结论是否可推广到任意三角形? ?若成立,如何证明?若成立,如何证明?CcBbAasinsinsin(1 1)你有何结论)你有何结论? ?二、定理的猜想二、定理的猜想 asinAbsinBcsinC2R.=2RbsinBBABCbO则设并延长交圆于连结为圆心作三角形的外接圆已知中在,2,RABBAOOcABbACaBCABC.sinsinsin对任意三角形都成立CcBbAa三、定理的证明三、定理的证明平面几何法平面几何法090 ,sinsin2ACBBBbB
3、BR (1 1)文字叙述文字叙述正弦定理:正弦定理:在一个三角形中,各边和它所对角在一个三角形中,各边和它所对角 的正弦的比相等的正弦的比相等. .(2)结构特点结构特点(3 3)方程的观点)方程的观点正弦定理实际上是已知其中三个正弦定理实际上是已知其中三个, ,求另一个求另一个. .能否运用向量的方法来证明正弦定理呢能否运用向量的方法来证明正弦定理呢?和谐美、对称美和谐美、对称美. .正弦定理正弦定理:CcBbAasinsinsin 在锐角三角形中在锐角三角形中. 的的夹夹角角为为与与,的的夹夹角角为为与与,的的夹夹角角为为与与ABjCBjACjC 90A 9090由向量加法的三角形法则由向
4、量加法的三角形法则ABCBAC ABjCBjACjABjCBACjj 得得的的数数量量积积两两边边同同取取与与,)90cos()90cos(90cosAABjCCBjACj 定定义义)(根根据据向向量量的的数数量量积积的的CcAaAcCasinsinsinsin 即即在在锐锐角角三三角角形形中中,可可得得垂垂直直于于点点作作过过同同理理 ,sinsin,BbCcCBjCCcBbAasinsinsin 也也有有jBACabc,于于垂垂直直作作单单位位向向量量证证明明:过过点点ACjA在钝角三角形中在钝角三角形中ABCj的的夹夹角角为为与与的的夹夹角角为为与与则则垂垂直直的的单单位位向向量量作作与
5、与过过点点设设CBjABjjACAA,900 90 AC 90具体证明过程具体证明过程马上完成马上完成!如图:若测得如图:若测得a48.1m,B43 , C69 ,求,求AB。解:解:A180 (43 69 )68 a ABsinA sinC=A.B.Ca在在 ABC中,由正弦定理得:中,由正弦定理得:asinCsinAAB=48.1 sin69sin68 =48.4(m) 学以致用学以致用You try解:解: 105)(180CAB30sin105sin10CcBbsinsin CBcbsinsin192565.30,45,10. 1bBCAc,ABC和边求角已知中在例正弦定理应用一:正弦
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 111 正弦 定理 课件 PPT
限制150内