三角形全等的判定(SAS).ppt
《三角形全等的判定(SAS).ppt》由会员分享,可在线阅读,更多相关《三角形全等的判定(SAS).ppt(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1、全等三角形概念:三条边对应相、全等三角形概念:三条边对应相等,三个角对应相等。等,三个角对应相等。 问题问题:如图有一池塘。要测池塘两端如图有一池塘。要测池塘两端A、B的距离,可的距离,可无法直接达到,因此这两点的距离无法直接量出。你能想无法直接达到,因此这两点的距离无法直接量出。你能想出办法来吗?出办法来吗?ABCED在平地上取一个可直接到达在平地上取一个可直接到达A和和B的点的点C,连结连结AC并延长至并延长至D使使CD=CA延长延长BC并延长至并延长至E使使CE=CB连结连结ED,那么量出那么量出DE的长,就是的长,就是A、B的距离的距离.为什么?为什么?1. 画画MAN = A2.
2、 在射线在射线 A M ,A N 上分别取上分别取 A B = AB , A C = AC .3. 连接连接 B C ,得,得 A B C .已知已知ABC是任意一个三角形,是任意一个三角形,画画A BC 使使A = A, A B =AB, A C =AC.画法:画法:边角边公理边角边公理 有两边和它们的有两边和它们的夹角夹角对应相等的对应相等的 两个三角形全等两个三角形全等. .可以简写成可以简写成 “边角边边角边” 或或“ SAS ” 1.1.在下列图中找出全等三角形在下列图中找出全等三角形?308 cm9 cm?308 cm8 cm8 cm5 cm30?8 cm5 cm308 cm?5
3、cm8 cm5 cm?308 cm9 cm?308 cm8 cm练习一练习一2.在下列推理中填写需要补在下列推理中填写需要补充的条件,使结论成立:充的条件,使结论成立:(1)如图,在如图,在AOB和和DOC中中AO=DO(已知已知)_=_( )BO=CO(已知已知) AOB DOC( ) AOB DOC对顶角相等对顶角相等SASCABDO例例1 1已知已知: 如图如图:AC=AD ,CAB=DAB. 求证求证: ACB ADB.ABCD证明证明:ACB ADB这两个条件够吗这两个条件够吗?例例1 1已知已知: 如图如图,AC=AD ,CAB=DAB. 求证求证: ACB ADB.ABCD证明证
4、明:ACB ADB.这两个条件够吗这两个条件够吗?还要什么条件呢还要什么条件呢?例例1 1已知已知: 如图如图,AC=AD ,CAB=DAB. 求证求证: ACB ADB.ABCD证明证明:ACB ADB.这两个条件够吗这两个条件够吗?还要什么条件呢还要什么条件呢?还要一条边还要一条边例例1 1已知已知: 如图如图,AC=AD ,CAB=DAB. 求证求证: ACB ADB.ABCD证明证明:在在ACB 和和 ADB中中 AC = A D (已知已知) CAB=DAB(已知)(已知) A B = A B (公共边)公共边)ACB ADB(SAS)ABCED在平地上取一个可直接到达在平地上取一个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 全等 判定 SAS
限制150内