222椭圆的简单几何性质2-1.ppt





《222椭圆的简单几何性质2-1.ppt》由会员分享,可在线阅读,更多相关《222椭圆的简单几何性质2-1.ppt(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、标准方程标准方程范围范围对称性对称性顶点坐标顶点坐标焦点坐标焦点坐标半轴长半轴长离心率离心率 a a、b b、c c的关的关系系22221(0)xyabab|x| a,|y| b关于关于x x 轴、轴、y y 轴成轴对称;轴成轴对称;关于原点成中心对称关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为长半轴长为a a, ,短短半轴长为半轴长为b. b. ababceaa2=b2+c222221(0)xyabba|x| b,|y| a(b,0)、(-b,0)、(0,a)、(0,-a)(0 , c)、(0, -c)关于关于x x 轴、轴、y y
2、轴成轴对称;轴成轴对称;关于原点成中心对称关于原点成中心对称长半轴长为长半轴长为a a, ,短短半轴长为半轴长为b. b. ababceaa2=b2+c212516. 1251611625. 11625. 1169.2222222222 yxDyxyxCyxByxA或或复习练习:复习练习:1.1.椭圆的长短轴之和为椭圆的长短轴之和为1818,焦距为,焦距为6 6,则椭圆,则椭圆的标准方程为(的标准方程为( )2、下列方程所表示的曲线中,关于、下列方程所表示的曲线中,关于x轴和轴和y 轴轴都对称的是(都对称的是( )A、X2=4Y B、X2+2XY+Y=0 C、X2-4Y2=XD、9X2+Y2=
3、4CD练习练习1、若椭圆的焦距长等于它的短轴长,则其离心率、若椭圆的焦距长等于它的短轴长,则其离心率为为 。2、若椭圆的两个焦点及一个短轴端点构成正三角形,则、若椭圆的两个焦点及一个短轴端点构成正三角形,则其离心率为其离心率为 。3、若椭圆的、若椭圆的 的两个焦点把长轴分成三等分,则其离心率的两个焦点把长轴分成三等分,则其离心率为为 。2221314、若某个椭圆的长轴、短轴、焦距依次成等差数列,、若某个椭圆的长轴、短轴、焦距依次成等差数列, 则其离心率则其离心率e=_535. 5. 已知椭圆的一个焦点为已知椭圆的一个焦点为F F(6 6,0 0)点)点B B,C C是短是短轴的两端点,轴的两端
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 222 椭圆 简单 几何 性质

限制150内