二次函数解析式的确定.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《二次函数解析式的确定.ppt》由会员分享,可在线阅读,更多相关《二次函数解析式的确定.ppt(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、用待定系数法求二次函数的解析式yxo课前复习课前复习例题选讲例题选讲课堂小结课堂小结课堂练习课堂练习课前复习二次函数解析式有哪几种表达式?二次函数解析式有哪几种表达式? 一般式:一般式:y=ax2+bx+c 顶点式:顶点式:y=a(x-h)2+k例题例题封面封面 交点式:交点式:y=a(x-x1)(x-x2)例例1. 如图,一位运动员在距篮下如图,一位运动员在距篮下4m处起处起跳投篮,球运行的路线是抛物线,当球运跳投篮,球运行的路线是抛物线,当球运行的水平距离是行的水平距离是2.5m时,球达到最大高度时,球达到最大高度3.5m ,已知篮筐中心到地面的距离已知篮筐中心到地面的距离3.05m ,
2、问球出手时离地面多高时才能中?问球出手时离地面多高时才能中? 球的出手点球的出手点A的横坐标为的横坐标为-2.5,将,将x=-2.5代入抛物线表达式得代入抛物线表达式得y=2.25,即当出手高即当出手高度为度为2.25m时,才能投中时,才能投中。y2.5m4m3.05ABCO3.5解:建立如图所示的直角坐标系,则球的最解:建立如图所示的直角坐标系,则球的最 高点和球篮的坐标分别为高点和球篮的坐标分别为B(0,3.5),C(1.5,3.05).3.5=c3.05=1.52a+c 设所求的二次函数的表达式为设所求的二次函数的表达式为y=ax2+c. 将点将点B和点和点C的坐标代入,得的坐标代入,得
3、 解得解得a= -02c= 3.5该抛物线的表达式为该抛物线的表达式为y=-0.2x2+3.5例题选讲一般式:一般式: y=ax2+bx+c交点式:交点式:y=a(x-x1)(x-x2)顶点式:顶点式:y=a(x-h)2+k解:解: 设所求的二次函数为设所求的二次函数为y=ax2+bx+c由条件得:由条件得:c=5a-b+5=10a+b+5=4解方程得:解方程得:因此:所求二次函数是:因此:所求二次函数是:a=2, b=-3, c=5y=2x2-3x+5已知一个二次函数的图象过点(已知一个二次函数的图象过点(1,10)、)、(1,4)、()、(0,5)三点,求这个函数的解析式?)三点,求这个函
4、数的解析式?oxy例例1例题例题封面封面例题选讲解:解:设所求的二次函数为设所求的二次函数为y=a(x1)2-3由条件得:由条件得:已知抛物线的顶点为(已知抛物线的顶点为(1,3),与),与y轴交点为轴交点为(0,5)求抛物线的解析式?)求抛物线的解析式?yox点点( 0,-5 )在抛物线上在抛物线上a-3=-5, 得得a=-2故所求的抛物线解析式为故所求的抛物线解析式为 y=2(x1)2-3即:即:y=2x2-4x5一般式:一般式: y=ax2+bx+c交点式:交点式:y=a(x-x1)(x-x2)顶点式:顶点式:y=a(x-h)2+k例例2例题例题封面封面例题选讲解:解: 设所求的二次函数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 解析 的确
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内