2019浙江省温州市中考数学试题(含解析版).doc
《2019浙江省温州市中考数学试题(含解析版).doc》由会员分享,可在线阅读,更多相关《2019浙江省温州市中考数学试题(含解析版).doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019年浙江省温州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1(4分)计算:(3)5的结果是()A15B15C2D22(4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A0.251018B2.51017C251016D2.510163(4分)某露天舞台如图所示,它的俯视图是()ABCD4(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为
2、()ABCD5(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图已知选择鲳鱼的有40人,那么选择黄鱼的有()A20人B40人C60人D80人6(4分)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10AyByCyDy7(4分)若扇形的圆心角为90,半径为6,则该扇形的弧长为()AB2C3D68(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A米B米C
3、米D米9(4分)已知二次函数yx24x+2,关于该函数在1x3的取值范围内,下列说法正确的是()A有最大值1,有最小值2B有最大值0,有最小值1C有最大值7,有最小值1D有最大值7,有最小值210(4分)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BMBC,作MNBG交CD于点L,交FG于点N,欧几里得在几何原本中利用该图解释了(a+b)(ab)a2b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记EPH的面积为S1,图中阴影部分的面积为S2若点A,L,G在同一直线上,则的值为()ABCD二、填空题(本题有6小题,每
4、小题5分,共30分)11(5分)分解因式:m2+4m+4 12(5分)不等式组的解为 13(5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有 人14(5分)如图,O分别切BAC的两边AB,AC于点E,F,点P在优弧()上,若BAC66,则EPF等于 度15(5分)三个形状大小相同的菱形按如图所示方式摆放,已知AOBAOE90,菱形的较短对角线长为2cm若点C落在AH的延长线上,则ABE的周长为 cm16(5分)图1是一种折叠式晾衣架晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OCOD10分米
5、,展开角COD60,晾衣臂OAOB10分米,晾衣臂支架HGFE6分米,且HOFO4分米当AOC90时,点A离地面的距离AM为 分米;当OB从水平状态旋转到OB(在CO延长线上)时,点E绕点F随之旋转至OB上的点E处,则BEBE为 分米三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17(10分)计算:(1)|6|+(1)0(3)(2)18(8分)如图,在ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CFAB交ED的延长线于点F(1)求证:BDECDF(2)当ADBC,AE1,CF2时,求AC的长19(8分)车间有20名工人,某一天他们生产的零件个数
6、统计如下表车间20名工人某一天生产的零件个数统计表生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20(8分)如图,在75的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合(1)在图1中画一个格点EFG,使点E,F,G分别落在边AB,BC,CD上,且EFG90(2)在图2中画一个格点四边形MNPQ,使点M,N,P,
7、Q分别落在边AB,BC,CD,DA上,且MPNQ21(10分)如图,在平面直角坐标系中,二次函数yx2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y0时x的取值范围(2)把点B向上平移m个单位得点B1若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B2重合已知m0,n0,求m,n的值22(10分)如图,在ABC中,BAC90,点E在BC边上,且CACE,过A,C,E三点的O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF(1)求证:四边形DCFG是平
8、行四边形(2)当BE4,CDAB时,求O的直径长23(12分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成已知儿童10人,成人比少年多12人(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童若由成人8人和少年5人带队,则所需门票的总费用是多少元?若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少24(14分)如图,在平面直角坐标系中,直
9、线yx+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OFDE于点F,连结OE动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点(1)求点B的坐标和OE的长(2)设点Q2为(m,n),当tanEOF时,求点Q2的坐标(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Qs,APt,求s关于t的函数表达式当PQ与OEF的一边平行时,求所有满足条件的AP的长2019年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10小
10、题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1(4分)计算:(3)5的结果是()A15B15C2D2【分析】根据正数与负数相乘的法则得(3)515;【解答】解:(3)515;故选:A【点评】本题考查有理数的乘法;熟练掌握正数与负数的乘法法则是解题的关键2(4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A0.251018B2.51017C251016D2.51016【分析】利用科学记数法的表示形式进行解答即可【解答】解:科学记数法表示:250 000
11、 000 000 000 0002.51017故选:B【点评】本题主要考查科学记数法,科学记数法是指把一个数表示成a10的n次幂的形式(1a10,n 为正整数)3(4分)某露天舞台如图所示,它的俯视图是()ABCD【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中【解答】解:它的俯视图是:故选:B【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图4(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()ABCD【分析】直接利用概率公式计算可得【解答】解:从中任意抽取1张,是“红桃”的概
12、率为,故选:A【点评】本题主要考查概率公式,随机事件A的概率P(A)事件A可能出现的结果数所有可能出现的结果数5(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图已知选择鲳鱼的有40人,那么选择黄鱼的有()A20人B40人C60人D80人【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数【解答】解:鱼类总数:4020%200(人),选择黄鱼的:20040%80(人),故选:D【点评】本题考查的是扇
13、形统计图读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小6(4分)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10AyByCyDy【分析】直接利用已知数据可得xy100,进而得出答案【解答】解:由表格中数据可得:xy100,故y关于x的函数表达式为:y故选:A【点评】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键7(4分)若扇形的圆心角为90,半径为
14、6,则该扇形的弧长为()AB2C3D6【分析】根据弧长公式计算【解答】解:该扇形的弧长3故选:C【点评】本题考查了弧长的计算:弧长公式:l(弧长为l,圆心角度数为n,圆的半径为R)8(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A米B米C米D米【分析】根据题意作出合适的辅助线,然后利用锐角三角函数即可表示出AB的长【解答】解:作ADBC于点D,则BD0.3,cos,sin,解得,AB米,故选:B【点评】本题考查解直角三角形的应用、轴对称图形,解答本题的关键是明确题意,利用数形结合的思想解答9(4分)已知二次函数yx24x+2,关于该函数在1x3的取值范围内,下
15、列说法正确的是()A有最大值1,有最小值2B有最大值0,有最小值1C有最大值7,有最小值1D有最大值7,有最小值2【分析】把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答【解答】解:yx24x+2(x2)22,在1x3的取值范围内,当x2时,有最小值2,当x1时,有最大值为y927故选:D【点评】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键10(4分)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BMBC,作MNBG交CD于点L,交FG于点N,欧几里得在几何原本中利用该图解释了(a+b)(a
16、b)a2b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记EPH的面积为S1,图中阴影部分的面积为S2若点A,L,G在同一直线上,则的值为()ABCD【分析】如图,连接ALGL,PF利用相似三角形的性质求出a与b的关系,再求出面积比即可【解答】解:如图,连接ALGL,PF由题意:S矩形AMLDS阴a2b2,PH,点A,L,G在同一直线上,AMGN,AMLGNL,整理得a3b,故选:C【点评】本题源于欧几里得几何原本中对(a+b) (ab)a2b2的探究记载图形简单,结合了教材中平方差证明的图形进行编制巧妙之处在于构造的三角形一边与矩形的一边等长,解题的关键是利用相似三角形的性
17、质求出a与b的关系,进而解决问题二、填空题(本题有6小题,每小题5分,共30分)11(5分)分解因式:m2+4m+4(m+2)2【分析】直接利用完全平方公式分解因式得出答案【解答】解:原式(m+2)2故答案为:(m+2)2【点评】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键12(5分)不等式组的解为1x9【分析】分别求出各不等式的解集,再求出其公共解集即可【解答】解:,由得,x1,由得,x9,故此不等式组的解集为:1x9故答案为:1x9【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键13(5分)某校学生“汉
18、字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有90人【分析】根据题意和直方图中的数据可以求得成绩为“优良”(80分及以上)的学生人数,本题得以解决【解答】解:由直方图可得,成绩为“优良”(80分及以上)的学生有:60+3090(人),故答案为:90【点评】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答14(5分)如图,O分别切BAC的两边AB,AC于点E,F,点P在优弧()上,若BAC66,则EPF等于57度【分析】连接OE,OF,由切线的性质可得OEAB,OFAC,由四边形内角和定理可求EO
19、F114,即可求EPF的度数【解答】解:连接OE,OFO分别切BAC的两边AB,AC于点E,FOEAB,OFAC又BAC66EOF114EOF2EPFEPF57故答案为:57【点评】本题考查了切线的性质,圆周角定理,四边形内角和定理,熟练运用切线的性质是本题的关键15(5分)三个形状大小相同的菱形按如图所示方式摆放,已知AOBAOE90,菱形的较短对角线长为2cm若点C落在AH的延长线上,则ABE的周长为12+8cm【分析】连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI2,根据COH是等腰直角三角形,即可得到CKO90,即CKIO,设CKOKx,则COIOx,IKxx,根据勾股定
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 浙江省 温州市 中考 数学试题 解析
限制150内