【数学】1-3《空间几何体的表面积与体积--球体》课件(新人教A版必修2).ppt
《【数学】1-3《空间几何体的表面积与体积--球体》课件(新人教A版必修2).ppt》由会员分享,可在线阅读,更多相关《【数学】1-3《空间几何体的表面积与体积--球体》课件(新人教A版必修2).ppt(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 割割 圆圆 术术 早在公元三世纪,我国数学家刘徽为推早在公元三世纪,我国数学家刘徽为推导圆的面积公式而发明了导圆的面积公式而发明了“倍边法割圆术倍边法割圆术”。他用加倍的方式不断增加圆内接正多边形的他用加倍的方式不断增加圆内接正多边形的边数,使其面积与圆的面积之差更小,即所边数,使其面积与圆的面积之差更小,即所谓谓“割之弥细,所失弥小割之弥细,所失弥小”。这样重复下去,。这样重复下去,就达到了就达到了“割之又割,以至于不可再割,则割之又割,以至于不可再割,则与圆合体而无所失矣与圆合体而无所失矣”。这是世界上最早的。这是世界上最早的“极限极限”思想。思想。球面:半圆以它的直径为旋转轴,旋转所成
2、的曲面。球面:半圆以它的直径为旋转轴,旋转所成的曲面。球球( (即球体即球体):):球面所围成的几何体。球面所围成的几何体。它包括它包括球面球面和和球面所包围的空间球面所包围的空间。半径是半径是R R的球的体积:的球的体积:推导方法推导方法:334RV 分割分割求近似和求近似和化为准确和化为准确和复习回顾复习回顾球的概念球的概念球心球心球的半径球的半径球的直径球的直径二、球的概念二、球的概念v点集角度点集角度 旋转体角度旋转体角度球面所围成的球面所围成的几何体几何体叫叫球体球体简称简称球球。球面球面:半圆以它的直径为旋转轴旋转所成的半圆以它的直径为旋转轴旋转所成的曲面曲面。球体与球面的区别?球
3、体与球面的区别?在在空间内空间内到一个定点的距离为定长的点的集合到一个定点的距离为定长的点的集合0半圆以它的直径为旋转轴旋转所成的半圆以它的直径为旋转轴旋转所成的曲面曲面。球体与球面的区别?球体与球面的区别?球面概念球面概念:球面所围成的球面所围成的几何体几何体叫叫球体球体简称简称球球。0ACD球心球心半半径径直径直径半圆以它的直径为旋转轴旋转所成的半圆以它的直径为旋转轴旋转所成的曲面曲面(旋转体角度)(旋转体角度)球面概念球面概念:在在空间内空间内到一个定点的距离为定长的点的到一个定点的距离为定长的点的集合集合(点集的角度)(点集的角度)二、球的概念二、球的概念球的截面的形状圆面圆面球面被经
4、过球心的平面截得的圆叫做球面被经过球心的平面截得的圆叫做大圆大圆不过球心的截面截得的圆叫做球的不过球心的截面截得的圆叫做球的小圆小圆球的体积公式的推导球的体积公式的推导球的体积公式及应用球的体积公式及应用球的表面积公式及应用球的表面积公式及应用球的表面积公式的推导球的表面积公式的推导l教学重点l教学难点化为准确和思想方法化为准确和思想方法求近似和求近似和分割分割重点难点重点难点球面被经过球心的平面截得的圆叫做球面被经过球心的平面截得的圆叫做大圆大圆不过球心的截面截得的圆叫做球的不过球心的截面截得的圆叫做球的小圆小圆R.34,32:33RVRV 从从而而猜猜测测半半球球? 半球半球V331RV
5、圆锥圆锥333RV 圆柱圆柱高等于底面半径的旋转体体积对比高等于底面半径的旋转体体积对比球的体积球的体积 学习球的知识要注意和圆的有关指示结合起来所以学习球的知识要注意和圆的有关指示结合起来所以我们先来回忆圆面积计算公式的导出方法我们先来回忆圆面积计算公式的导出方法球的体积球的体积 我们把一个半径为我们把一个半径为R的圆分成若干等分,然后如上图重新的圆分成若干等分,然后如上图重新拼接起来,把一个圆近似的看成是边长分别是拼接起来,把一个圆近似的看成是边长分别是.的的矩矩形形和和RR .2R 于于那那么么圆圆的的面面积积就就近近似似等等当所分份数不断增加时,精确程度就越来越高;当当所分份数不断增加
6、时,精确程度就越来越高;当份数无穷大时,就得到了圆的面积公式份数无穷大时,就得到了圆的面积公式法法导导出出球球的的体体积积公公式式下下面面我我们们就就运运用用上上述述方方即先把半球分割成即先把半球分割成n部分,再求出每一部分的近似体积,部分,再求出每一部分的近似体积,并将这些近似值相加,得出半球的近似体积,最后考虑并将这些近似值相加,得出半球的近似体积,最后考虑n变变为无穷大的情形,由半球的近似体积推出准确体积为无穷大的情形,由半球的近似体积推出准确体积球的体积球的体积分割分割求近似和求近似和化为准确和化为准确和,21RRr ,)(222nRRr ,)2(223nRRr AOB2C2球的体积球
7、的体积AOOR)1( inR半半径径:层层“小小圆圆片片”下下底底面面的的第第i.,2,1,)1(22niinRRri irOA球的体积球的体积nininRnRrVii,2,1,)1(1232 niinRRri,2,1,)1(22 nVVVV 21半球半球)1(2122223nnnnR 6) 12() 1(123 nnnnnnR 6)12)(1(1123 nnnR 球的体积球的体积6)12)(11(13nnRV 半半球球.01, nn时时当当.343233RVRV 从从而而半半球球334RVR 的的球球的的体体积积为为:定定理理:半半径径是是球的体积球的体积2)2)若每小块表面看作一个平面若每
8、小块表面看作一个平面, ,将每小块平面作为底面将每小块平面作为底面, ,球心作为球心作为顶点便得到顶点便得到n n个棱锥个棱锥, ,这些棱锥体积之和近似为球的体积这些棱锥体积之和近似为球的体积. .当当n n越大越大, ,越接近于球的体积越接近于球的体积, ,当当n n趋近于无穷大时就精确到等于球的体积趋近于无穷大时就精确到等于球的体积. .1) 1)球的表面是曲面球的表面是曲面, ,不是平面不是平面, ,但如果将表面平均分割成但如果将表面平均分割成n n个小块个小块, ,每小块表面可近似看作一个平面每小块表面可近似看作一个平面, ,这这n n小块平面面积之和可近似小块平面面积之和可近似看作球
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 空间几何体的表面积与体积-球体 空间 几何体 表面积 体积 球体 课件 新人 必修
限制150内