数学七年级下学期《实数》学案.doc
《数学七年级下学期《实数》学案.doc》由会员分享,可在线阅读,更多相关《数学七年级下学期《实数》学案.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第1课时 实 数【学习目标】1、 了解立方根的概念,初步学会用根号表示一个数的立方根;2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;3、体会一个数的立方根的惟一性, 分清一个数的立方根与平方根的区别。【学习重点和难点】1.学习重点:立方根的概念和求法。2.学习难点:立方根与平方根的区别。【学习过程】一、自主探究1、填空:(有理数的两种分类)有理数 有理数 2、 使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 3 , , , , ,二、探究新知1、归纳: 任何一个有理数都可以写成_小数或_小数的形式。反过来,任何_小数或_小数也都是有理数观察 通过前面的探讨和学习,我
2、们知道,很多数的_根和_根都是_小数, _小数又叫无理数,也是无理数结论: _和_统称为实数你能举出一些无理数吗?2、试一试 把实数分类 像有理数一样,无理数也有正负之分。例如,是_无理数,是_无理数。由于非0有理数和无理数都有正负之分,所以实数也可以这样分类: 实数 3、我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?(1)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O,点O的坐标是多少?从图中可以看出OO的长时这个圆的周长_,点O的坐标是_这样,无理数可以用数轴上的点表示出来(2)总结:事实上,每一个无理数都可以用数轴
3、上的_表示出来,这就是说,数轴上的点有些表示_,有些表示_当从有理数扩充到实数以后,实数与数轴上的点就是_的,即每一个实数都可以用数轴上的_来表示;反过来,数轴上的_都是表示一个实数 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数_ 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?总结 数的相反数是_,这里表示任意_。一个正实数的绝对值是_;一个负实数的绝对值是它的_;0的绝对值是_三、边讲边练例1、把下列各数分别填入相应的集合里: 正有理数 负有理数 正无理数 负无理数 2、下列实数中是无理数的为( )A. 0 B. C. D. 3、的相反数是 ,绝对值 4、绝对值等于的数是 , 的平方是 5、6、求绝对值练习(一)、判断下列说法是否正确:1.实数不是有理数就是无理数。 ( )2.无限小数都是无理数。 ( )3.无理数都是无限小数。 ( )4.带根号的数都是无理数。 ( ) 5.两个无理数之和一定是无理数。 ( )6.所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。( )(二)、填空1、 2、3、比较大小 4、_三、我的感悟 这节课我的最大收获是:我不能解决的问题是:四、课后反思
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版数学七年级下册学案 人教版七年级下学期数学学案 人教版七年级数学下册学案
限制150内