2013届人教版中考数学复习解题指导:第26讲矩形、菱形、正方形.ppt
《2013届人教版中考数学复习解题指导:第26讲矩形、菱形、正方形.ppt》由会员分享,可在线阅读,更多相关《2013届人教版中考数学复习解题指导:第26讲矩形、菱形、正方形.ppt(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第26讲讲矩形、菱形、正方形矩形、菱形、正方形 第第26讲讲 考点聚焦考点聚焦考点聚焦考点聚焦考点考点1 1 矩形矩形 矩形定义有一个角是_的平行四边形叫做矩形矩形的性质对称性矩形是一个轴对称图形,它有两条对称轴矩形是中心对称图形,它的对称中心就是对角线的交点定理(1)矩形的四个角都是_角;(2)矩形的对角线互相平分并且_推论在直角三角形中,斜边上的中线等于_的一半直角直角 直直相等相等 斜边斜边 第第26讲讲 考点聚焦考点聚焦矩形的判定(1)定义法(2)有三个角是直角的四边形是矩形(3)对角线_的平行四边形是矩形拓展(1)矩形的两条对角线把矩形分成四个面积相等的的等腰三角形;(2)矩形的面
2、积等于两邻边的积相等相等 第第26讲讲 考点聚焦考点聚焦考点考点2 2 菱形菱形 菱形定义有一组_相等的平行四边形是菱形菱形的性质对称性菱形是轴对称图形,两条对角线所在的直线是它的对称轴菱形是中心对称图形,它的对称中心是两条对角线的交点定理(1)菱形的四条边_;(2)菱形的两条对角线互相_平分,并且每条对角线平分_邻边邻边 相等相等 垂直垂直 一组对角一组对角 第第26讲讲 考点聚焦考点聚焦菱形的判定(1)定义法(2)四条边_的四边形是菱形(3)对角线互相_的平行四边形是菱形菱形面积(1)由于菱形是平行四边形,所以菱形的面积底高(2)因为菱形的对角线互相垂直平分,所以其对角线将菱形分成4个全等
3、三角形,故菱形的面积等于两对角线乘积的_.相等相等 垂直垂直一半一半 考点考点3 3 正方形正方形 第第26讲讲 考点聚焦考点聚焦正方形的定义有一组邻边相等,且有一个角是直角的平行四边形叫做正方形正方形的性质(1)正方形对边_(2)正方形四边_(3)正方形四个角都是_(4)正方形对角线相等,互相_,每条对角线平分一组对角(5)正方形既是轴对称图形也是中心对称图形,对称轴有四条,对称中心是对角线的交点正方形的判定(1)有一组邻边相等的矩形是正方形(2)有一个角是直角的菱形是正方形平行平行 相等相等 直角直角 垂直平分垂直平分 第第26讲讲 考点聚焦考点聚焦判定正方形的思路图:判定正方形的思路图:
4、考点考点4 4 中点四边形中点四边形 第第26讲讲 考点聚焦考点聚焦定义顺次连接四边形各边中点所得的四边形,我们称之为中点四边形常见结论顺次连接四边形各边中点所得到的四边形是平行四边形顺次连接矩形各边中点所得到的四边形是_顺次连接菱形各边中点所得到的四边形是_顺次连接正方形各边中点所得到的四边形是_顺次连接等腰梯形各边中点所得的四边形是_顺次连接对角线相等的四边形各边中点所得到的四边形是_顺次连接对角线互相垂直的四边形所得到的四边形是_菱形菱形 矩形矩形 正方形正方形 菱形菱形 菱形菱形矩形矩形 第第26讲讲 归类示例归类示例归类示例归类示例 类型之一矩形的性质及判定的应用类型之一矩形的性质及
5、判定的应用 命题角度:命题角度:1. 矩形的性质;矩形的性质;2. 矩形的判定矩形的判定例例1 1 20122012六盘水六盘水如图如图261,已知,已知E是是ABCD中中BC边边的中点,连接的中点,连接AE并延长并延长AE交交DC的延长线于点的延长线于点F.(1)求证:求证:ABE FCE;(2)连接连接AC、BF,若,若AEC2ABC,求证:四边形,求证:四边形ABFC为矩形为矩形图图261第第26讲讲 归类示例归类示例 解析解析 (1) (1)利用利用AASAAS可得出三角形可得出三角形ABEABE与三角形与三角形FCEFCE全等全等;(2)(2)利用对角线相等的平行四边形为矩形可得出四
6、边形利用对角线相等的平行四边形为矩形可得出四边形ABFCABFC为矩形为矩形 第第26讲讲 归类示例归类示例第第26讲讲 归类示例归类示例 类型之二类型之二菱形的性质及判定的应用菱形的性质及判定的应用 命题角度:命题角度:1. 1. 菱形的性质;菱形的性质;2. 2. 菱形的判定菱形的判定第第26讲讲 归类示例归类示例 例例2 2 2012重庆重庆 已知:如图已知:如图262,在菱形,在菱形ABCD中,中,F为边为边BC的中点,的中点,DF与对角线与对角线AC交于点交于点M,过,过M作作MECD于点于点E,12.(1)若若CE1,求,求BC的长;的长;(2)求证:求证:AMDFME.图图262
7、62 2第第26讲讲 归类示例归类示例 解析解析 (1) (1)根据菱形的对边平行可得根据菱形的对边平行可得ABCDABCD,可,可得得11ACDACD,所以,所以ACDACD22,得,得CMCMDMDM,根据,根据等腰三角形三线合一的性质可得等腰三角形三线合一的性质可得CECEDEDE;(2)(2)证明证明CEMCEM和和CFMCFM全等,得全等,得MEMEMFMF,延长,延长ABAB、DFDF交于点交于点N N,然后证明,然后证明11NN,得,得AMAMNMNM,再利用,再利用“角角边角角边”证明证明CDFCDF和和BNFBNF全等,得全等,得NFNFDFDF,最后结合图,最后结合图形形N
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013 届人教版 中考 数学 复习 解题 指导 26 矩形 菱形 正方形
限制150内