初中函数知识点总结.docx
《初中函数知识点总结.docx》由会员分享,可在线阅读,更多相关《初中函数知识点总结.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中函数知识点总结 引导语:函数是初中数学一个特别重要的学问点,那么学习函数时,有哪些学问点是必需要驾驭的呢?接下来是我为你带来收集整理的初中函数学问点总结,欢迎阅读!I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax2+bx+c(a,b,c为常数,a0,且a确定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以确定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。二次函数表达式的右边通常为二次三项式。II.二次函数的三种表达式一般式:y=ax2+bx+c(a,b,c为常数,a0)顶点式:y=a(x-h)2
2、+k抛物线的顶点P(h,k)交点式:y=a(x-x)(x-x)仅限于与x轴有交点A(x,0)和B(x,0)的抛物线注:在3种形式的相互转化中,有如下关系:h=-b/2a k=(4ac-b2)/4a x,x=(-bb2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x2的图像,可以看出,二次函数的图像是一条抛物线。IV.抛物线的性质1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特殊地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b2)/4a)当-b/2a=0时,P
3、在y轴上;当=b2-4ac=0时,P在x轴上。3.二次项系数a确定抛物线的开口方向和大小。当a0时,抛物线向上开口;当a0时,抛物线向下开口。|a|越大,则抛物线的开口越小。4.一次项系数b和二次项系数a共同确定对称轴的位置。当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右。5.常数项c确定抛物线与y轴交点。抛物线与y轴交于(0,c)6.抛物线与x轴交点个数=b2-4ac0时,抛物线与x轴有2个交点。=b2-4ac=0时,抛物线与x轴有1个交点。=b2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x=-bb24ac的值的相反数,乘上虚数i,整个式子除
4、以2a)V.二次函数与一元二次方程特殊地,二次函数(以下称函数)y=ax2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax2+bx+c=0此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。1二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a0)的图象形态相同,只是位置不同,它们的顶点坐标及对称轴如下表:当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到当h>0,k>0时,将抛物线y=ax2向右
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 函数 知识点 总结
限制150内