高二年级数学必修二下册知识点.docx
《高二年级数学必修二下册知识点.docx》由会员分享,可在线阅读,更多相关《高二年级数学必修二下册知识点.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Word高二年级数学必修二下册知识点 【导语】高二变化的大背景,便是文理分科(或七选三)。在对各个学科都有了初步了解后,同学们需要对自己将来的进展科目有所选择、有所侧重。这可谓是同学们第一次完全自己把握、风险未知的主动选择。高二频道为你整理了高二班级数学必修二下册学问点,助你金榜题名! 1.高二班级数学必修二下册学问点 1、按是否共面可分为两类: (1)共面:平行、相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。 异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。 两异面直线所成的角:范围为(0,90)esp、空间向量法
2、 两异面直线间距离:公垂线段(有且只有一条)esp、空间向量法 2、若从有无公共点的角度看可分为两类: (1)有且仅有一个公共点相交直线; (2)没有公共点平行或异面 直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行 直线在平面内有很多个公共点 直线和平面相交有且只有一个公共点 直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。 2.高二班级数学必修二下册学问点 1.函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x); (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数); (3)推断函数奇偶性可用定义的等
3、价形式:f(x)f(-x)=0或(f(x)0); (4)若所给函数的解析式较为简单,应先化简,再推断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2.复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b,求f(x)的定义域,相当于xa,b时,求g(x)的值域(即f(x)的定义域);讨论函数的问题肯定要留意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证
4、明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对xR时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称; 4.函数
5、的周期性 (1)y=f(x)对xR时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2a的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(ab)对称,则函数y=f(x)是周期为2的周期函数; (6)y=f(x)对xR时,f(x+a)=-f(x)(或f(x+a)=,则y=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 数学 必修 下册 知识点
限制150内