732多边形内角各和.ppt
《732多边形内角各和.ppt》由会员分享,可在线阅读,更多相关《732多边形内角各和.ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、顶点顶点边边内角内角对角线对角线外角外角v1、在平面内,、在平面内,_叫做多边形。叫做多边形。v、在多边形中连接、在多边形中连接_的线段叫做多边形的对角线。的线段叫做多边形的对角线。v、三角形的内角和是、三角形的内角和是_度度v、你能够利用三角形的内角和求四边形、你能够利用三角形的内角和求四边形的内角和吗?试试看?的内角和吗?试试看?ABCD思路:多边形问题转化思路:多边形问题转化为三角形问题来解决为三角形问题来解决四边形的内角和为四边形的内角和为360由一些线段首尾顺次相接组成的图形由一些线段首尾顺次相接组成的图形多边形不相邻的两个顶点的线段多边形不相邻的两个顶点的线段1800ACB如图,三
2、角形如图,三角形ABC的的内角和是多少度?内角和是多少度?探索多边形的内角和探索多边形的内角和ABCD四边形的内角和是四边形的内角和是多少度?多少度?图中有几个三角形?图中有几个三角形?探索多边形的内角和ABDCE 五边形的内角和是五边形的内角和是多少度?多少度?图中有几个三角形?图中有几个三角形?探索多边形的内角和ABDCFE六边形的内角和是六边形的内角和是多少度?多少度?图中有几个三角形?图中有几个三角形?多 边 形 的 边 数多 边 形 的 边 数34567n分成三角形的个数分成三角形的个数多边形的内角和多边形的内角和1180 2345360 540 720 900 n2 (n2)180
3、 n边形的内角和(边形的内角和(n2)180 探索多(探索多(n)边形的内角和)边形的内角和 多了什么?如何处理?多了什么?如何处理?ABCDABCDEABCDEF 这种分割方式,将多边形分成这种分割方式,将多边形分成n-1个三角形,个三角形,故所有三角形的内角和为(故所有三角形的内角和为(n-1)180 ,边,边上一点周围所形成的平角不是多边形的内角,上一点周围所形成的平角不是多边形的内角,因此因此n边形的内角和为边形的内角和为 (n-1)180 - 180 = (n-2)180 ABCDABCDEABCDEF 该图中该图中n边形共有边形共有n个三角形,故所有三角个三角形,故所有三角形内角和
4、为形内角和为n180 ,但每个图中都有一个,但每个图中都有一个以红圈圈住的点,它是一个圆周角以红圈圈住的点,它是一个圆周角360 ,因,因此此n边形的内角和为边形的内角和为 n180 - 360 = (n-2)180 多了什么?如何处理?多了什么?如何处理?得到定理得到定理:n n边形的内角和等于边形的内角和等于(n(n2)2)180180 . .说明:(1)多边形的内角和仅与边数有关,与多边形的大小、形状无关;(2)强调凸多边形的内角的范围:0180.结论:例1:求八边形的内角和的度数。 解:(n2)180(82)180 1080答:八边形的内角和为1080。 例2:一个正多边形的一个内角为
5、一个正多边形的一个内角为150150, 你知道它是几边形吗?你知道它是几边形吗? 解:设这个多边形为n边形,根据题意得:(n2)18010n n12答:这个多边形是12边形。另解:由于多边形外角和等于360 而这个正多边形的每个外角都等于 18015030, 所以这个正 多边形的边数等于 3603012。巩固练习:巩固练习:3、多边形内角和为、多边形内角和为1080则它是则它是( )边形。)边形。 4、多边形内角和为、多边形内角和为1800则它是则它是( )边形。)边形。1、七边形内角和为(、七边形内角和为( )2、十边形内角和为(、十边形内角和为( )5、有一个正多边形的外角是有一个正多边形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 732 多边形 内角
限制150内