2022年新人教A版高中数学23《直线平面垂直的判定及其性质》word教案 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年新人教A版高中数学23《直线平面垂直的判定及其性质》word教案 .pdf》由会员分享,可在线阅读,更多相关《2022年新人教A版高中数学23《直线平面垂直的判定及其性质》word教案 .pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.3直线与平面垂直的判定及其性质2.3.1直线与平面垂直的判定一、教学目标1、知识与技能(1)掌握直线和平面垂直的定义及判定定理;(2)掌握判定直线和平面垂直的方法;2、过程与方法( 1)通过实例,使学生感知直线和平面垂直的概念,操作确认的基础上学会归纳、概括结论 . (2)经历判定直线与平面垂直的判定过程. 3、情感、态度与价值观培养学生学会从“感性认识”到“理性认识”过程中获取新知. 二、教学重点、难点重点:直线与平面垂直的定义和判定定理的应用. 难点:直线与平面垂直的定义和判定定理的探究. 三、教学设计(一)创设情景,导入新课思考1:在现实生活中,我们经常看到一些直线与平面垂直的现象,
2、例如:“旗杆与地面,大桥的桥柱和水面等的位置关系”,你能举出一些类似的例子吗?然后让学生回忆、思考、讨论、教师对学生的活动给予评价. 思考 2:将一本书打开直立在桌面上,观察书脊(想象成一条直线)与桌面的位置关系呈什么状态?此时书脊与每页书和桌面的交线的位置关系如何?思考 3:一条直线与一个平面垂直的意义是什么?并通过分析旗杆与它在地面上的射影的位置关系引出课题内容. (二)师生互动,探究新知1、借助长方体模型让学生感知直线与平面的垂直关系. 教师引导学生用 “平面化” 的思想来思考问题: 从直线与直线垂直、直线与平面平行等的定义过程得到启发,能否用一条直线垂直于一个平面内的直线来定义这条直线
3、与这个平面垂直呢?并组织学生交流讨论,概括其定义 . 如果直线 L 与平面 内的任意一条直线都垂直,我们就说直线L 与平面 互相垂直, 记精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 9 页作 L , 直线 L 叫做平面 的垂线,平面 叫做直线L 的垂面 . 如图 1, 直线与平面垂直时,它们唯一公共点P叫做垂足 . 并对画示表示进行说明. L p 图 1 2、老师提出问题,让学生思考:(1)问题: 虽然可以根据定义判定直线与平面垂直,但这种方法实际上难以实施.有没有比较方便可行的方法来判断直线和平面垂直呢?(2)师生活动: 请同学们
4、准备一块三角形的纸片,我们一起来做如图2 试验:过 ABC的顶点 A翻折纸片, 得到折痕AD ,将翻折后的纸片竖起放置在桌面上(BD、 DC与桌面接触) ,问如何翻折才能保证折痕AD与桌面所在平面垂直? A B D C 图 2 (3)归纳结论: 引导学生根据直观感知及已有经验(两条相交直线确定一个平面),进行合情推理,获得判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。特别强调:a) 定理中的“两条相交直线”这一条件不可忽视;b) 定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想. 3. 直线与平面所成的角思考:1) 前面讨论了直线与平面垂直的问题,
5、那么直线与平面不垂直时情况怎么样呢? 2)在空间中如何度量一条斜线与一平面所成的角? 3)空间中任意一直线与一平面所成的角的取值范围是什么?答:斜线与平面所成的角是该斜线与平面内任意直线所成角中最小的角. (三)概念辨析, 巩固提高精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 9 页(1)课本 P65例 1 教学(2)课本 P66例 2 教学探究: 1 如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?探究 2:两条平行直线与同一个平面所成的角的大小关系如何?反之成立吗?一条直线与两个平行平面所成的角的大小关系
6、如何?(四)小结请归纳一下获得直线与平面垂直的判定定理的基本过程. 直线与平面垂直的判定定理,体现的教学思想方法是什么?直线与平面所成的角(五)作业P67 练习 1,2,3 补充:已知AB为平面的一条斜线, B为斜足, AO 平面,垂足为 O ,直线 BC在平面内,已知 ABC=60 ,OBC=45 ,求斜线AB和平面 所成的角 . 2.3.2平面与平面垂直的判定一、教学目标1、知识与技能(1)理解和掌握“二面角” 、 “二面角的平面角”及“直二面角”、 “两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;2、过程与方法(1)通过实例让学生直观感知“二面角”概念的
7、形成过程;(2)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理. 3、情感、态度与价值观通过揭示概念的形成、发展和应用过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力. 二、教学重点、难点。重点:平面与平面垂直的判定;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 9 页难点:如何度量二面角的大小. 三、教学方法与教学用具。1、教学方法:实物观察,类比归纳,语言表达, 讲练结合 . 2、教学用具:二面角模型(两块硬纸板),多媒体投影 . 四、教学设计(一)创设情景,导入新课
8、问题 1:平面几何中“角”是怎样定义的?问题2:在立体几何中, “异面直线所成的角” 、 “直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?以上问题让学生自由发言,教师再作小结,并顺势抛出问题:在生产实践中,有许多问题要涉及到两个平面相交所成的角的情形,你能举出这个问题的一些例子吗?如修水坝、发射人造卫星等,而这样的角有何特点,该如何表示呢?下面我们共同来观察, 研探 . (二)师生互动,探究新知1、二面角的有关概念老师展示一张纸面,并对折让学生观察其状,然后引导学生用数学思维思考,并对以上问题类比,归纳出二面角的概念及记法表示(如下表所示)角二面角图形 A 边顶点 O 边 B A
9、梭 l B 定义从平面内一点出发的两条射线(半直线)所组成的图形从空间一直线出发的两个半平面所组成的图形构成射线 点(顶点)一射线半平面一 线(棱)一半平面表示AOB 二面角 -l- 或 -AB- 2、二面角的度量二面角定理地反映了两个平面相交的位置关系,如我们常说“把门开大一些”,是指二面角大一些, 那我们应如何度量二两角的大小呢?师生活动:师生共同做一个小实验(预先精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 9 页准备好的二面角的模型)在其棱上位取一点为顶点,在两个半平面内各作一射线(如图3) ,通过实验操作,研探二面角大小的度
10、量方法二面角的平面角。教师特别指出:(1)在表示二面角的平面角时,要求“OA L” ,OB L;(2) AOB的大小与点O在 L 上位置无关;(3)当二面角的平面角是直角时,这两个平面的位置关系怎样?承上启下,引导学生观察,类比、自主探究, B获得两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。 C O A (三)概念辨析,巩固提高例题:课本P.72 例 3 图 -3 做法:教师引导学生分析题意,先让学生自己动手推理证明,然后抽检学生掌握情况,教师最后讲评并板书证明过程。问题:课本P.73 的探究问题做法:学生思考(或分组讨论),老师与学生对话完成. (四)小结(1)
11、二面角以及平面角的有关概念;(2)两个平面垂直的判定定理的内容,它与直线与平面垂直的判定定理有何关系?(五)作业 P73 习题 2.3 A , 1,2,3,4. 2.3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质一、教学目标1、知识与技能(1)掌握直线与平面垂直,平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系. 2、过程与方法精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 9 页(1)让学生在观察物体模型的基础上,进行操作确认, 获得对性质定
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线平面垂直的判定及其性质 2022年新人教A版高中数学23直线平面垂直的判定及其性质word教案 2022 新人 高中数学 23 直线 平面 垂直 判定 及其 性质 word 教案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内