2022年06离散型随机变量的均值 .pdf
《2022年06离散型随机变量的均值 .pdf》由会员分享,可在线阅读,更多相关《2022年06离散型随机变量的均值 .pdf(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 / 15 2 3 离散型随机变量的均值与方差231 离散型随机变量的均值教学目标:知识与技能 :了解离散型随机变量的均值 或期望的意义,会根据离散型随机变量的分布列求出均值或期望过 程 与 方 法 : 理 解 公 式 “ Ea +b)=aE +b” , 以 及 “若 Bn,p),则 E=np”. 能熟练地应用它们求相应的离散型随机变量的均值或期望。情感、态度与价值观 :承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。教学重点: 离散型随机变量的 均值或期望的概念教学难点: 根据离散型随机变量的分布列求出均值或期望授课类型: 新授课课时安排: 4 课时教具:多媒体、实物投影
2、仪教学过程 :一、复习引入:1. 随机变量 :如果随机实验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母、等表示8jGSC5ZkyQ 2. 离散型随机变量 :对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量8jGSC5ZkyQ 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 1 页,共 15 页 - - - - - - - - - 2 / 15 3连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一
3、切值,这样的变量就叫做连续型随机变量8jGSC5ZkyQ 4. 离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机实验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出8jGSC5ZkyQ 若是随机变量,baba,是常数,则也是随机变量并且不改变其属性 离散型、连续型) 5. 分布列 : 设离散型随机变量 可能取得值为x1,x2,, ,x3,, , 取每一个值xii=1,2,, )的概率为()iiPxp,则称表x1x2,xi,P P1P2,Pi,为随机变量 的概率分布,简称 的分布列6. 分布列的两个性质:Pi
4、0,i1,2,, ;P1+P2+,=17. 离散型随机变量的二项分布: 在一次随机实验中,某事件可能发生也可能不发生,在n次独立重复实验中这个事件发生的次数是一个随机变量如果在一次实验中某事件发生的概率是P,那么在n次独立重复实验中这个事件恰好发生k次的概率是8jGSC5ZkyQ knkknnqpCkP)(,其中n,p为参数,并记knkknqpCb(k;n,p8. 离散型随机变量的几何分布:在独立重复实验中,某事件第一次发生时,所作实验的次数也是一个正整数的离散型随机变量“k”表示在第k 次独立重复实验时事件第一次发生. 如果把 k 次实验时事件A 发生记为kA、事件A 不发生记为kA,P(k
5、A=p,P(kA=q(q=1-p,那么8jGSC5ZkyQ 112311231()()() () ()()()kkkkkPkP A A AAAP A P A P AP AP Aqp= 1kqp,其中k0,1,2, , ,pq1二、讲解新课:根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数 的分布列如下8jGSC5ZkyQ 4 5 6 7 8 9 10 P 0.02 0.04 0.06 0.09 0.28 0.29 0.22 在 n 次射击之前,可以根据这个分布列估计n 次射击的平均环数 这 就是 我 们 今天 要 学
6、习的 离散 型随 机 变 量的 均 值 或期 望8jGSC5ZkyQ 根据射手射击所得环数 的分布列,我们可以估计,在n 次射击中,预计大约有名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 3 页,共 15 页 - - - - - - - - - 4 / 15 nnP02.0)4(次得 4 环;nnP04.0)5(次得 5 环;,nnP22.0)10(次得 10 环故在 n 次射击的总环数大约为n02.04n04.05n22.01002.04(04.05n)22.0
7、10,从而,预计 n 次射击的平均环数约为02.0404.0532.822.010这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平8jGSC5ZkyQ 对于任一射手,若已知其射击所得环数的分布列,即已知各个)(iP, 是随机变量,则 也是随机变量,它们的分布列为x1x2,xn ,bax1bax2,baxn,P p1p2,pn,于是E11)(pbax22)(pbax,nnpbax)(,11(pxa22px,nnpx,1(pb2p,np, baE,由此,我们得到了期望的一个性质:baEbaE)(5. 若B,则Enp三、讲解范例:名
8、师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 5 页,共 15 页 - - - - - - - - - 6 / 15 例 1. 篮球运动员在比赛中每次罚球命中得1 分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分的期望8jGSC5ZkyQ 解:因为3 .0)0(,7 .0)1(PP,所以7.03.007 .01E例 2. 一次单元测验由20个选择题构成,每个选择题有4 个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分
9、,满分100分 学生甲选对任一题的概率为 0.9,学生乙则在测验中对每题都从4 个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望8jGSC5ZkyQ 解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是,,则 B + 2 00000P (X2= 2 000 8jGSC5ZkyQ = 620000. 01 + 2000(1-0.01 = 2 600 , EX3 = 60000P (X3 = 60000 + 10 000 P(X3 =10 000 + 0 P (X3 =0 8jGSC5ZkyQ = 60 0000.01 + 100000.25=3100 . 采取方案 2
10、的平均损失最小,所以可以选择方案2 . 值得注意的是,上述结论是通过比较“平均损失”而得出的一般地,我们可以这样来理解“平均损失”:假设问题中的气名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 7 页,共 15 页 - - - - - - - - - 8 / 15 象情况多次发生,那么采用方案2 将会使损失减到最小由于洪水是否发生以及洪水发生的大小都是随机的,所以对于个别的一次决策,采用方案 2 也不一定是最好的8jGSC5ZkyQ 例 4.随机抛掷一枚骰子,求所得
11、骰子点数的期望解:6 ,2, 1,6/1)(iiP,6/166/126/11E=3.5例 5.有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1 件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过10 次 求抽查次数的期望结果保留三个有效数字)8jGSC5ZkyQ 解:抽查次数取 110 的整数,从这批数量很大的产品中抽出 1 件检查的实验可以认为是彼此独立的,取出次品的概率是0.15,取出正品的概率是0.85,前1k次取出正品而第k次k=1,2,10)取出次品的概率:8jGSC5ZkyQ 15.085. 0)(1kkP613.5抛掷骰子所得点数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年06离散型随机变量的均值 2022 06 离散 随机变量 均值
限制150内