《1521平方差公式》课件.ppt
《《1521平方差公式》课件.ppt》由会员分享,可在线阅读,更多相关《《1521平方差公式》课件.ppt(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2米米2米米 街心花园有一块边长为街心花园有一块边长为a米的正方形草地,米的正方形草地,经统一规划后,南北向要加长经统一规划后,南北向要加长2米,而东西向米,而东西向要缩短要缩短2米问改造后的长方形草地的面积是米问改造后的长方形草地的面积是多少?多少?计算下列多项式的积计算下列多项式的积(1)()(x6 )( x6)(2)()(m5)(m5)(3)()(5x2 )( 5x2)(4)()(x4y )( x4y)观察上述多项式,你发现观察上述多项式,你发现什么规律?运算出结果后,什么规律?运算出结果后,你又发现什么规律?你又发现什么规律?(1)()(x6 )( x6)=x262(2)()(m5)(
2、m5)=m252(3)()(5x2 )( 5x2)=(5x)222(4)()(x4y )( x4y)=x2(4y)2(1)(x+3)(x3) ;(2)(1+2a)(12a) ;(3)(x+4y)(x4y) ;(4)(y+5z)(y5z) ;=x29 =14a2=x216y2 ;=y225z2 =x232 ;=12(2a)2 ;=x2(4y)2 ;=y2(5z)2 计算计算 像这样具有特殊形式的多项式相乘,像这样具有特殊形式的多项式相乘,我们能否找到一个一般性的公式,并加以我们能否找到一个一般性的公式,并加以熟记,遇到相同形式的多项式相乘时,直熟记,遇到相同形式的多项式相乘时,直接把结果写出来呢
3、?接把结果写出来呢?= 边长为边长为b的小正方形纸片放置在边长的小正方形纸片放置在边长为为a的大正方形纸片上,未盖住部分的面的大正方形纸片上,未盖住部分的面积为积为_(1)公式左边两个二项式必须是相同两)公式左边两个二项式必须是相同两数的和与差相乘;且左边两括号内的第数的和与差相乘;且左边两括号内的第一项相等、第二项符号相反(互为相反一项相等、第二项符号相反(互为相反数或式数或式.(2)公式右边是这两个数的平方差;即)公式右边是这两个数的平方差;即右边是左边括号内的第一项的平方减去右边是左边括号内的第一项的平方减去第二项的平方第二项的平方 (3)公式中的)公式中的 a和和b 可以是数,也可以是
4、可以是数,也可以是代数式代数式 (4)各因式项数相同符号相同的放在)各因式项数相同符号相同的放在前面平方,符号相反的放在后面平方前面平方,符号相反的放在后面平方例例1 利用平方差公式计算:利用平方差公式计算:(1)(7+6x)(76x);(2)(3y x)(x3y); (3)(m2n)(m2n)解:解:(1) (7+6x)(76x)=(2)(3y+x) (x3y) =(3)(m+2n)(m2n )72-(6x)2= 4936x2x23y2= x29y2=(m)2(2n)2=m24n2(1)(b+2)(b2); (2)(a +2b)(a2b) ;(3)(3x+2)(3x2) ; (4)(4a+3
5、)(4a3) ;(5)(3x+y)(3x+y) ; (6)(yx)(xy) (1)(b+2)(b2)(3)(3x+2)(3x2) (2)(a +2b)(a2b)=b24=a24b2=9x24(5)(3x+y)(3x+y) (4)(4a+3)(4a3)(6)(yx)(xy)=16a29=9x2y2=x2y2(1)19922008(1)19922008 =(2000 8) (2000+8 )=20002 82 =4000 00064=3 999 936 例例2 利用平方差公式计算:利用平方差公式计算:解:解:(2)9961004(2)9961004 =(1000 4) (1000+4 )=1000
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1521平方差公式 1521 平方 公式 课件
限制150内