2020年高考数学(理)模拟卷新课标及答案解析(2).doc
《2020年高考数学(理)模拟卷新课标及答案解析(2).doc》由会员分享,可在线阅读,更多相关《2020年高考数学(理)模拟卷新课标及答案解析(2).doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2020年高考数学(理)模拟卷新课标(2)(本试卷满分150分,考试用时120分钟)注意事项:1答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。2作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并
2、交回。第卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则集合中元素的个数为A6B7C8D9【答案】C【解析】【分析】先根据题意解出集合,再根据题意分析中元素为中的子集,可求出【详解】解:因为集合,所以,1,因为,所以中的元素为的子集个数,即有个,故选:【点睛】本题考查集合,集合子集个数,属于基础题2已知a为实数,若复数z(a21)(a1)i为纯虚数,则()A1B0C1iD1i【答案】D【解析】因为为纯虚数,所以,得,则有,故选D.3已知实数满足,则( )ABCD【答案】C【解析】,综上所述,故故选4如图的折线图是
3、某公司2018年1月至12月份的收入与支出数据,若从6月至11月这6个月中任意选2个月的数据进行分析,则这2个月的利润(利润收入支出)都不高于40万的概率为( )ABCD【答案】B【解析】【分析】从7月至12月这6个月中任意选2个月的数据进行分析,基本事件总数,由折线图得6月至11月这6个月中利润(利润收入支出)低于40万的有6月,9月,10月,由此即可得到所求【详解】如图的折线图是某公司2017年1月至12月份的收入与支出数据,从6月至11月这6个月中任意选2个月的数据进行分析,基本事件总数,由折线图得6月至11月这6个月中利润(利润收入支出)不高于40万的有6月,8月,9月,10月,这2个
4、月的利润(利润收入支出)都不高于40万包含的基本事件个数,这2个月的利润(利润收入支出)都低于40万的概率为,故选:【点睛】本题主要考查了古典概型,考查了运算求解能力,属于中档题5函数的大致图象是( )ABCD【答案】A【解析】【分析】用排除B,C;用排除;可得正确答案.【详解】解:当时,所以,故可排除B,C;当时,故可排除D故选:A【点睛】本题考查了函数图象,属基础题6安徽怀远石榴(Punicagranatum)自古就有“九州之奇树,天下之名果”的美称,今年又喜获丰收.怀远一中数学兴趣小组进行社会调查,了解到某石榴合作社为了实现万元利润目标,准备制定激励销售人员的奖励方案:在销售利润超过万元
5、时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增加而增加,但奖金总数不超过万元,同时奖金不能超过利润的.同学们利用函数知识,设计了如下函数模型,其中符合合作社要求的是( )(参考数据:)ABCD【答案】D【解析】【分析】根据奖励规则,函数必须满足:,增函数,【详解】对于函数:,当时,不合题意;对于函数:,当时,不合题意;对于函数:,不满足递增,不合题意;对于函数:,满足:,增函数,且,结合图象:符合题意故选:D【点睛】此题考查函数模型的应用,关键在于弄清题目给定规则,依次用四个函数逐一检验.7已知正项等差数列中,若,若,成等比数列,则等于( )ABCD【答案】A【解析】
6、正项等差数列中,构成等比数列,即构成等比数列,依题意,有,解得或(舍去),故选A.8如图,在中,若,用表示为()ABCD【答案】C【解析】【分析】根据向量的加减法运算和数乘运算来表示即可得到结果.【详解】本题正确选项:【点睛】本题考查根据向量的线性运算,来利用已知向量表示所求向量;关键是能够熟练应用向量的加减法运算和数乘运算法则.9如图,分别是双曲线的左、右焦点,过的直线与双曲线分别交于点,若为等边三角形,则双曲线的方程为( )ABCD【答案】C【解析】根据双曲线的定义,可得|AF1|-|AF2|=2a,ABF2是等边三角形,即|AF2|=|AB|BF1|=2a又|BF2|-|BF1|=2a,
7、|BF2|=|BF1|+2a=4a,BF1F2中,|BF1|=2a,|BF2|=4a,F1BF2=120|F1F2|2=|BF1|2+|BF2|2-2|BF1|BF2|cos120即4c2=4a2+16a2-22a4a(-)=28a2,解得c2=7a2,又c=所以 方程为故选C点睛:本题主要考查双曲线的定义和简单几何性质,考查了余弦定理解三角形,根据条件求出a,b的关系是解决本题的关键10九章算术卷七盈不足中有如下问题:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”翻译为:“现有几个人一起买羊,若每人出五钱,还差四十五钱,若每人出七钱,还差三钱,问人数、羊价分别是多少
8、”.为了研究该问题,设置了如图所示的程序框图,若要输出人数和羊价,则判断框中应该填( )ABCD【答案】A【解析】【分析】根据程序框图确定表示的含义,从而可利用方程组得到输出时的值,从而得到输出时的取值,找到符合题意的判断条件.【详解】由程序框图可知,表示人数,表示养价该程序必须输出的是方程组的解,则时输出结果 判断框中应填本题正确选项:【点睛】本题考查根据循环框图输出结果填写判断框内容的问题,关键是能够准确判断出输出结果时的取值,属于常考题型.11已知一个棱长为2的正方体,被一个平面截后所得的几何体的三视图如图所示,则该几何体的体积是( )A6 B C D【答案】D【解析】该几何体是正方体截
9、去一个三棱台所得,体积为,故选D12已知函数,若方程恰有三个不同的实数根,则实数的取值范围为ABCD【答案】D【解析】【分析】等价于或,由有唯一解可得有两个不同的根,转化为的图象有两个交点,利用数形结合可得结果.【详解】可变形为,即或,由题可知函数的定义域为,当时,函数单调递增;当时,函数单调递减,画出函数的大致图象,如图所示,当且仅当时,因为方程恰有三个不同的实数根,所以恰有两个不同的实数根,即的图象有两个交点,由图可知时,的图象有两个交点,所以实数的取值范围为,故选D【点睛】本题主要考查分段函数的解析式、方程的根与函数图象交点的关系,考查了数形结合思想的应用,属于难题. 函数零点的几种等价
10、形式:函数的零点函数在轴的交点方程的根函数与的交点.第卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。把答案填在题中的横线上。13在数列中,前项和为,则=_。【答案】【解析】由题意可得,故数列an为等比数列,且公比q=2,故故答案为:14设,则的最大值为_.【答案】【解析】【分析】已知,直接利用基本不等式转化求解的最大值即可【详解】,即,两边平方整理得,当且仅当,时取最大值;故答案为:【点睛】本题考查基本不等式的应用,考查转化思想以及计算能力,注意基本不等式成立的条件15设曲线在点处的切线与曲线在点处的切线垂直,则点的坐标为_.【答案】【解析】【分析】分别求出,的导数,结合导数
11、的几何意义及切线垂直可求.【详解】设,因为的导数为,所以曲线在点处的切线的斜率为;因为的导数为,曲线在点处的切线斜率为,所以,解得,代入可得,故.【点睛】本题主要考查导数的几何意义,利用导数解决曲线的切线问题一般是考虑导数的几何意义,侧重考查数学抽象和数学运算的核心素养.16已知抛物线的焦点为,点是抛物线上一点,以为圆心的圆与线段相交于点,且被直线截得的弦长为,若,则_【答案】1【解析】将点坐标代入抛物线方程得,解得,即,由于为圆的半径,而,所以,故,即,两边平方化简得,解得,故,.【点睛】本题主要考查直线和椭圆的位置关系,考查圆和直线的位置关系,考查特殊的等腰三角形中解三角形的方法.首先点是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020数学(理)高考模拟卷含答案 2020年高考数学(理)模拟卷含答案 2020年数学(理)高考冲刺卷含答案
限制150内