正弦定理(省参赛获奖课件).ppt
《正弦定理(省参赛获奖课件).ppt》由会员分享,可在线阅读,更多相关《正弦定理(省参赛获奖课件).ppt(41页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、正弦定理ABC3C2C1CBC的长度与角A的大小有关吗?三角形中角A与它的对边BC的长度是否存在定量关系?在RtABC中,各角与其对边的关系:caA sincbB sin1sinC不难得到:CcBbAasinsinsinCBAabccc在非直角三角形ABC中有这样的关系吗?AcbaCB正弦定理:在一个三角形中,各边和它所对角的正弦的比相等.CcBbAasinsinsin即(1) 若直角三角形,已证得结论成立.bADcADCBsin,sin所以AD=csinB=bsinC, 即,sinsinCcBb同理可得,sinsinCcAaCcBbAasinsinsin即:DAcbCB图1过点A作ADBC于
2、D,此时有证法1:(2)若三角形是锐角三角形, 如图1,由(1)(2)(3)知,结论成立CCbADsinsin )(且CcBbAasinsinsin仿(2)可得D(3) 若三角形是钝角三角形,且角C是钝角如图2, 此时也有cADB sin交BC延长线于D,过点A作ADBC,CAcbB图2AasinBbsinCcsin(2R为为ABC外接圆直径)外接圆直径)2R思考求证:证明:证明:OC/cbaCBARCcRcCCCCCBA2sin2sinsin,90RCcBbAaRBbRAa2sinsinsin2sin,2sin同理作外接圆O,过B作直径BC/,连AC/,AcbCBDa向量法证法2:利用向量的
3、数量积,产生边的长与内角的三角函数的关系来证明.证明:BacAbcCabSABCsin21sin21sin21BACDabcaABCahS21而CbBcADhasinsinCabBacSABCsin21sin21同理BacAbcCabSABCsin21sin21sin21haAbcSABCsin21证法3:剖析定理、加深理解正弦定理可以解决三角形中哪类问题: 已知两角和一边,求其他角和边. 已知两边和其中一边的对角,求另一边的对角,进而可求其他的边和角.CcBbAasinsinsin定理的应用例 1在ABC 中,已知c = 10,A = 45。, C = 30。求 a , b (精确到0.01
4、).解: 且 105C)(A180 BCcBbsinsin b = CBcsinsin19.32=30sin105sin10已知两角和任意边,已知两角和任意边,求其他两边和一角求其他两边和一角CcAasinsina = CAcsinsin14.14=21030sin45sin10BACbc)26(5a在ABC中,已知 A=75,B= 45,c= 求a , b.23在ABC中,已知 A=30,B=120,b=12 求a , c.a= ,c= 3434 3233ba练习例 2 已知a=16, b= , A=30 .求角B,C和边c已知两边和其中一边已知两边和其中一边的对角的对角,求其他边和角求其他
5、边和角解:由正弦定理BbAasinsin得231630sin316sinsinaAbB所以60,或120当 时60C=90.32cC=30.16sinsinACac316当120时B16300ABC16316变式: a=30, b=26, A=30求角B,C和边c300ABC2630解:由正弦定理BbAasinsin得30133030sin26sinsinaAbB所以25.70, 或180025.70=154.30由于154.30 +3001800故B只有一解(如图)C=124.30,57.49sinsinACac变式: a=30, b=26, A=30求角B,C和边c300ABC2630解:
6、由正弦定理BbAasinsin得30133030sin26sinsinaAbB所以25.70,C=124.30,57.49sinsinACaca b A B ,三角形中大边对大角已知两边和其中一边的对角已知两边和其中一边的对角,求其他边和求其他边和角角1.根据下列条件解三角形 (1)b=13,a=26,B=30.B=90,C=60,c= 313(2) b=40,c=20,C=45.练习注:三角形中角的正弦值小于时,角可能有两解无解课堂小结(1)三角形常用公式:(2)正弦定理应用范围: 已知两角和任意边,求其他两边和一角 已知两边和其中一边的对角,求另一边的对角。(注意解的情况)正弦定理:ABC
7、111sinsinsin222ABCSabCbcAacBsinsinsinabcABC2R已知两边和其中一边的对角已知两边和其中一边的对角,求其求其他边和角时他边和角时,三角形三角形什么情况下有什么情况下有一解一解,二解二解,无解无解?课后思考课后思考ACababsinA无解无解ACaba=bsinA一解一解ACabbsinA a b 两解两解BB1B2BACbaab一解一解aABabCABabCABabCab 一解一解正弦定理的综合应用正弦定理的综合应用221.tantan,.ABCaBbAABC在中,已知试判断的形状1.3,3 3,30 ,.ABCbcBABC在中,已知试判断的形状21.(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正弦 定理 参赛 获奖 课件
限制150内