2022年最新人教版八年级数学下册教案 .pdf
《2022年最新人教版八年级数学下册教案 .pdf》由会员分享,可在线阅读,更多相关《2022年最新人教版八年级数学下册教案 .pdf(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、名师精编优秀教案第十九章平行四边形19.1 平行四边形及其性质19.1.1 平行四边形及其性质(一)一、教学目标:1 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质2 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证3 培养学生发现问题、解决问题的能力及逻辑推理能力二、重点、难点1 重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用2 难点:运用平行四边形的性质进行有关的论证和计算三、例题的意图分析例 1 是教材 P93 的例 1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以
2、让学生来解答例2 是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法此题应让学生自己进行推理论证四、课堂引入1我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1) 定义: 两组对边分别平行的四边形是平行四边形(2) 表示:平行四边形用符号“”来表示如图,在四边形ABCD 中,AB DC ,AD BC ,那么四边形ABCD 是平行四边形平行四边形ABC
3、D 记作“ ABCD ”,读作“平行四边形ABCD ”AB/DC ,AD/BC, 四边形ABCD是平行四边形(判定);四边形ABCD是平行四边形AB/DC , AD/BC(性质)注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角而三角形对边是指一个角的对边,对角是指一条边的对角(教学时要结合图形,让学生认识清楚)2 【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平
4、行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?( 1)由定义知道,平行四边形的对边平行根据平行线的性质可知,在平行四边形中,相邻的角互为补角(相邻的角指四边形中有一条公共边的两个角注意和第一章的邻角相区别教学时结合图形使学生分辨清楚)( 2)猜想平行四边形的对边相等、对角相等下面证明这个结论的正确性已知:如图ABCD ,求证: AB CD , CB AD , B D, BAD BCD 分析:作ABCD的对角线AC ,它将平行四边形分成ABC和 CDA ,证明这两个三角形全等即可得到结论(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形
5、的问题 )证明:连接AC ,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 27 页名师精编优秀教案 ABCD ,AD BC ,1 3, 2 4又 ACCA ,ABC CDA (ASA ) ABCD ,CB AD , B D又 1 4 2 3,BAD BCD 由此得到:平行四边形性质1 平行四边形的对边相等平行四边形性质2 平行四边形的对角相等五、例习题分析例 1(教材 P93例 1)例 2(补充)如图,在平行四边形ABCD 中, AE=CF ,求证: AF=CE 分析:要证 AF=CE , 需证 ADF CBE , 由于四边形ABCD
6、是平行四边形, 因此有 D= B , AD=BC ,AB=CD ,又 AE=CF ,根据等式性质,可得BE=DF 由“边角边”可得出所需要的结论证明略六、随堂练习1填空:(1)在ABCD 中, A=50,则B = 度,C = 度,D = 度(2)如果ABCD 中, A B=240,则 A= 度, B= 度, C= 度, D= 度(3) 如果ABCD的周长为 28cm, 且 AB : BC=2 5, 那么 AB= cm , BC= cm , CD= cm , CD= cm 2如图 4.3 9,在ABCD 中, AC为对角线, BE AC,DFAC ,E、F 为垂足,求证:BE DF七、课后练习1
7、 (选择)在下列图形的性质中,平行四边形不一定具有的是() ( A)对角相等( B)对角互补( C)邻角互补(D)内角和是3602在ABCD中,如果EF AD ,GH CD ,EF与 GH相交与点O ,那么图中的平行四边形一共有() ( A)4 个 (B)5 个(C)8 个(D)9 个3如图, ADBC ,AE CD , BD平分 ABC ,求证 AB=CE 19.1.2 平行四边形的性质( 二) 一、教学目标:1 理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质2 能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题3 培养学生的推理论证能力和逻辑思维能力二
8、、重点、难点1 重点:平行四边形对角线互相平分的性质,以及性质的应用2 难点:综合运用平行四边形的性质进行有关的论证和计算三、例题的意图分析本节课安排了两个例题,例1 是一道补充题,它是性质3 的直接运用,然后对例1 进行了引申,可以根据学生的实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等例1 与后面的三个图形是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的例 2 是教材P94 的例 2,这是复习巩固小学学过的平行四边形面积计算这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用
9、公式计算在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法四、课堂引入精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 27 页名师精编优秀教案1复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:具有一般四边形的性质(内角和是360)角:平行四边形的对角相等,邻角互补边:平行四边形的对边相等2【探究】:请学生在纸上画两个全等的ABCD和EFGH ,并连接对角线AC 、BD和 EG 、HF,设它们分别交于点 O 把这两个平行四边形落在一起,在点O处钉一个图钉
10、,将ABCD绕点 O旋转180,观察它还和EFGH 重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:( 1)平行四边形是中心对称图形,两条对角线的交点是对称中心;( 2)平行四边形的对角线互相平分五、例习题分析例 1(补充)已知:如图421,ABCD 的对角线AC 、BD相交于点 O , EF过点 O与 AB 、CD分别相交于点E、F求证: OE OF , AE=CF , BE=DF 证明:在ABCD 中, AB CD ,1 2 3 4又 OA OC(平行四边形的对角线互相平分) ,AOE COF (ASA )OE OF ,AE=CF
11、 (全等三角形对应边相等)ABCD , AB=CD (平行四边形对边相等) ABAE=CD CF 即 BE=FD【引申】若例1 中的条件都不变,将EF转动到图b 的位置,那么例1 的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c 和图 d),例 1 的结论是否成立,说明你的理由解略例 2 (教材 P94的例 2) 已知四边形ABCD 是平行四边形, AB 10cm,AD 8cm ,ACBC ,求 BC 、CD 、AC 、OA的长以及ABCD 的面积分析: 由平行四边形的对边相等,可得 BC 、CD的长, 在 RtABC中,由勾股定理可得AC的长再由平行四边形的对角线
12、互相平分可求得 OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底高(高为此底上的高),可求得ABCD 的面积(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了)3. 平行四边形的面积计算解略(参看教材P94)六、随堂练习1在平行四边形中,周长等于48,已知一边长12,求各边的长已知 AB=2BC ,求各边的长已知对角线AC 、BD交于点 O ,AOD与AOB的周长的差是10,求各边的长2如图,ABCD 中,AE BD ,EAD=60 ,AE=2cm ,AC+BD=14cm ,则 OBC的周长是 _ _cm3
13、ABCD 一内角的平分线与边相交并把这条边分成cm5,cm7的两条线段, 则ABCD 的周长是 _ _cm精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 27 页名师精编优秀教案七、课后练习1判断对错(1)在ABCD 中, AC交 BD于 O,则 AO=OB=OC=OD()(2)平行四边形两条对角线的交点到一组对边的距离相等()(3)平行四边形的两组对边分别平行且相等()(4)平行四边形是轴对称图形()2在 ABCD中, AC 6、BD 4,则 AB的范围是 _ _3在平行四边形ABCD中,已知AB 、BC 、CD三条边的长度分别为(x
14、+3),( x-4 )和 16,则这个四边形的周长是4公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB 15cm ,AD 12cm,AC BC ,求小路BC , CD ,OC的长,并算出绿地的面积19.2 平行四边形的判定19.2.1平行四边形的判定(一)一、教学目标:1在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法2会综合运用平行四边形的判定方法和性质来解决问题3培养用类比、逆向联想及运动的思维方法来研究问题二、重点、难点3 重点:平行四边形的判定方法及应用4 难点:平行四边形的判定定理与性质定理的灵活应用三、例题的意图分析本节课安排了
15、3个例题,例 1是教材 P96的例 3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法例2与例 3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题例3是一道拼图题, 教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由四、课堂引入1欣赏图片、提出问题展示图片, 提出问题, 在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2【探究】 :小明的父亲手中有
16、一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。平行四边形判定方法2 对角线互相平分的四边形是平行四边形。五、例习题分析例 1(教材 P96例 3)已
17、知:如图ABCD的对角线AC 、BD交于点 O,E、F 是 AC上的两点,并且AE=CF 求证:四边形BFDE是平行四边形分析:欲证四边形BFDE 是平行四边形可以根据判定方法2 来证明(证明过程参看教材)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 27 页名师精编优秀教案问;你还有其它的证明方法吗?比较一下,哪种证明方法简单例 2(补充)已知:如图, ABBA ,BCCB ,CAAC 求证: (1) ABC B, CAB A, BCA C;(2) ABC的顶点分别是 BCA各边的中点证明: (1) ABBA ,CBBC ,四边形
18、ABCB 是平行四边形A BC B( 平行四边形的对角相等) 同理 CAB A, BCA C(2) 由(1) 证得四边形ABCB 是平行四边形同理,四边形ABA C 是平行四边形 AB BC, ABAC(平行四边形的对边相等) BCAC同理BACA,ABCBABC的顶点 A 、B、 C分别是 BCA的边BC、CA、AB的中点例 3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形你能在图中找出所有的平行四边形吗?并说说你的理由解:有 6 个平行四边形, 分别是ABOF ,ABCO ,BCDO ,CDEO ,DEFO ,EFAO 理由是:因为正ABO 正 AOF ,所以AB=BO
19、,OF=FA 根据“两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形其它五个同理六、随堂练习1如图,在四边形 ABCD 中,AC 、BD相交于点 O ,(1)若 AD=8cm ,AB=4cm ,那么当 BC=_ _cm ,CD=_ _cm 时,四边形 ABCD 为平行四边形;(2)若 AC=10cm,BD=8cm,那么当 AO=_ _cm ,DO=_ _cm 时,四边形 ABCD 为平行四边形2已知:如图,ABCD中,点 E、F 分别在 CD 、AB上, DFBE , EF交 BD于点 O 求证: EO=OF 3灵活运用课本 P89例题,如图:由火柴棒拼出的一列图形, 第
20、 n个图形由(n+1 )个等边三角形拼成, 通过观察,分析发现:第 4个图形中平行四边形的个数为 _ _ (6 个)第 8个图形中平行四边形的个数为 _ _ (20个)七、课后练习1(选择)下列条件中能判断四边形是平行四边形的是()( A )对角线互相垂直(B)对角线相等( C)对角线互相垂直且相等(D)对角线互相平分2已知:如图,ABC ,BD 平分 ABC ,DE BC ,EF BC ,求证: BE=CF 19.2.2 平行四边形的判定(二)一、教学目标:1掌握用一组对边平行且相等来判定平行四边形的方法2会综合运用平行四边形的四种判定方法和性质来证明问题3通过平行四边形的性质与判定的应用,
21、启迪学生的思维,提高分析问题的能力二、重点、难点1重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法2难点:平行四边形的判定定理与性质定理的综合应用三、例题的意图分析本节课的两个例题都是补充的题目,目的是让学生能掌握平行四边形的第三种判定方法和会综合运用平行四边形的判定方法和性质来解决问题学生程度好一些的学校,可以适当地自己再补充一些题目,使同学们会应用这些方法进行几何的推理证明,通过学习,培养学生分析问题、寻找最精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 27 页名师精编优秀教案佳解题途径的能力四、课堂引
22、入1平行四边形的性质;2平行四边形的判定方法;3【探究】取两根等长的木条AB 、CD ,将它们平行放置,再用两根木条BC 、AD 加固,得到的四边形ABCD 是平行四边形吗?结论 :一组对边平行且相等的四边形是平行四边形五、例习题分析例1(补充)已知:如图,ABCD 中, E、F分别是 AD 、BC 的中点,求证:BE=DF 分析:证明 BE=DF ,可以证明两个三角形全等,也可以证明四边形 BEDF 是平行四边形,比较方法,可以看出第二种方法简单证明:四边形 ABCD 是平行四边形, AD CB ,AD=CD E 、 F分别是 AD 、BC 的中点, DE BF ,且 DE=21AD,BF=
23、21BC DE=BF四边形 BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形) BE=DF此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路例2(补充)已知:如图,ABCD 中, E、F分别是 AC上两点,且 BE AC于E,DF AC于F求证:四边形BEDF 是平行四边形分析:因为 BE AC 于 E , DFAC 于F,所以 BE DF需再证明 BE=DF ,这需要证明 ABE 与 CDF 全等,由角角边即可证明:四边形 AB
24、CD 是平行四边形, AB=CD,且 AB CD BAE= DCF BE AC 于E,DF AC于F, BE DF ,且 BEA= DFC=90 ABE CDF (AAS ) BE=DF四边形 BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形)六、课堂练习1(选择)在下列给出的条件中,能判定四边形ABCD 为平行四边形的是()( A)AB CD ,AD=BC (B) A=B, C=D ( C)AB=CD ,AD=BC (D)AB=AD ,CB=CD 2已知:如图, AC ED ,点B在AC上,且 AB=ED=BC , 找出图中的平行四边形,并说明理由3已知:如图,在ABCD 中,
25、AE 、CF分别是 DAB 、BCD 的平分线求证:四边形AFCE 是平行四边形七、课后练习1判断题:(1) 相邻的两个角都互补的四边形是平行四边形; ( ) (2) 两组对角分别相等的四边形是平行四边形; ( ) (3) 一组对边平行,另一组对边相等的四边形是平行四边形; ( ) (4) 一组对边平行且相等的四边形是平行四边形; ( ) (5) 对角线相等的四边形是平行四边形; ( ) (6) 对角线互相平分的四边形是平行四边形 ( ) 2延长 ABC的中线 AD至 E,使 DE=AD 求证:四边形ABEC是平行四边形精选学习资料 - - - - - - - - - 名师归纳总结 - - -
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年最新人教版八年级数学下册教案 2022 新人 八年 级数 下册 教案
限制150内