2017年全国统一高考数学试卷(理科)(新课标ⅲ).doc
《2017年全国统一高考数学试卷(理科)(新课标ⅲ).doc》由会员分享,可在线阅读,更多相关《2017年全国统一高考数学试卷(理科)(新课标ⅲ).doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2017年全国统一高考数学试卷(理科)(新课标)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5分)已知集合A(x,y)|x2+y21,B(x,y)|yx,则AB中元素的个数为()A3B2C1D02(5分)设复数z满足(1+i)z2i,则|z|()ABCD23(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图根据该折线图,下列结论错误的是()A月接待游客量逐月增加B年接待游客量逐年增加C各年的月接待游客量高峰期大致在7,8月D各
2、年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4(5分)(x+y)(2xy)5的展开式中的x3y3系数为 ()A80B40C40D805(5分)已知双曲线C:1 (a0,b0)的一条渐近线方程为yx,且与椭圆+1有公共焦点,则C的方程为()A1B1C1D16(5分)设函数f(x)cos(x+),则下列结论错误的是()Af(x)的一个周期为2Byf(x)的图象关于直线x对称Cf(x+)的一个零点为xDf(x)在(,)单调递减7(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A5B4C3D28(5分)已知圆柱的高为1,它的两个底面的圆周在直
3、径为2的同一个球的球面上,则该圆柱的体积为()ABCD9(5分)等差数列an的首项为1,公差不为0若a2,a3,a6成等比数列,则an前6项的和为()A24B3C3D810(5分)已知椭圆C:1(ab0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bxay+2ab0相切,则C的离心率为()ABCD11(5分)已知函数f(x)x22x+a(ex1+ex+1)有唯一零点,则a()ABCD112(5分)在矩形ABCD中,AB1,AD2,动点P在以点C为圆心且与BD相切的圆上若+,则+的最大值为()A3B2CD2二、填空题:本题共4小题,每小题5分,共20分。13(5分)若x,y满足
4、约束条件,则z3x4y的最小值为 14(5分)设等比数列an满足a1+a21,a1a33,则a4 15(5分)设函数f(x),则满足f(x)+f(x)1的x的取值范围是 16(5分)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:当直线AB与a成60角时,AB与b成30角;当直线AB与a成60角时,AB与b成60角;直线AB与a所成角的最小值为45;直线AB与a所成角的最小值为60;其中正确的是 (填写所有正确结论的编号)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个
5、试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:60分。17(12分)ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA0,a2,b2(1)求c;(2)设D为BC边上一点,且ADAC,求ABD的面积18(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,
6、统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10,15)15,20)20,25)25,30)30,35)35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?19(12分)如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,ABDCBD,ABBD(1)证明:平面ACD平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体
7、积相等的两部分,求二面角DAEC的余弦值20(12分)已知抛物线C:y22x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,2),求直线l与圆M的方程21(12分)已知函数f(x)x1alnx(1)若f(x)0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)(1+)m,求m的最小值(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。选修4-4:坐标系与参数方程22(10分)在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参
8、数)设l1与l2的交点为P,当k变化时,P的轨迹为曲线C(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:(cos+sin)0,M为l3与C的交点,求M的极径选修4-5:不等式选讲23已知函数f(x)|x+1|x2|(1)求不等式f(x)1的解集;(2)若不等式f(x)x2x+m的解集非空,求m的取值范围2017年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5分)已知集合A(x,y)|x2+y21,B(x,y)|yx,则AB中元素的个数为()
9、A3B2C1D0【解答】解:由,解得:或,AB的元素的个数是2个,故选:B2(5分)设复数z满足(1+i)z2i,则|z|()ABCD2【解答】解:(1+i)z2i,(1i)(1+i)z2i(1i),zi+1则|z|故选:C3(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图根据该折线图,下列结论错误的是()A月接待游客量逐月增加B年接待游客量逐年增加C各年的月接待游客量高峰期大致在7,8月D各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【解答】解:由已有中20
10、14年1月至2016年12月期间月接待游客量(单位:万人)的数据可得:月接待游客量逐月有增有减,故A错误;年接待游客量逐年增加,故B正确;各年的月接待游客量高峰期大致在7,8月,故C正确;各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D正确;故选:A4(5分)(x+y)(2xy)5的展开式中的x3y3系数为 ()A80B40C40D80【解答】解:(2xy)5的展开式的通项公式:Tr+1(2x)5r(y)r25r(1)rx5ryr令5r2,r3,解得r3令5r3,r2,解得r2(x+y)(2xy)5的展开式中的x3y3系数22(1)3+2340故选:C5(5分)已
11、知双曲线C:1 (a0,b0)的一条渐近线方程为yx,且与椭圆+1有公共焦点,则C的方程为()A1B1C1D1【解答】解:椭圆+1的焦点坐标(3,0),则双曲线的焦点坐标为(3,0),可得c3,双曲线C:1 (a0,b0)的一条渐近线方程为yx,可得,即,可得,解得a2,b,所求的双曲线方程为:1故选:B6(5分)设函数f(x)cos(x+),则下列结论错误的是()Af(x)的一个周期为2Byf(x)的图象关于直线x对称Cf(x+)的一个零点为xDf(x)在(,)单调递减【解答】解:A函数的周期为2k,当k1时,周期T2,故A正确,B当x时,cos(x+)cos(+)coscos31为最小值,
12、此时yf(x)的图象关于直线x对称,故B正确,C当x时,f(+)cos(+)cos0,则f(x+)的一个零点为x,故C正确,D当x时,x+,此时函数f(x)不是单调函数,故D错误,故选:D7(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A5B4C3D2【解答】解:由题可知初始值t1,M100,S0,要使输出S的值小于91,应满足“tN”,则进入循环体,从而S100,M10,t2,要使输出S的值小于91,应接着满足“tN”,则进入循环体,从而S90,M1,t3,要使输出S的值小于91,应不满足“tN”,跳出循环体,此时N的最小值为2,故选:D8(5分)已知圆柱
13、的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()ABCD【解答】解:圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,该圆柱底面圆周半径r,该圆柱的体积:VSh故选:B9(5分)等差数列an的首项为1,公差不为0若a2,a3,a6成等比数列,则an前6项的和为()A24B3C3D8【解答】解:等差数列an的首项为1,公差不为0a2,a3,a6成等比数列,(a1+2d)2(a1+d)(a1+5d),且a11,d0,解得d2,an前6项的和为24故选:A10(5分)已知椭圆C:1(ab0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bxa
14、y+2ab0相切,则C的离心率为()ABCD【解答】解:以线段A1A2为直径的圆与直线bxay+2ab0相切,原点到直线的距离a,化为:a23b2椭圆C的离心率e故选:A11(5分)已知函数f(x)x22x+a(ex1+ex+1)有唯一零点,则a()ABCD1【解答】解:因为f(x)x22x+a(ex1+ex+1)1+(x1)2+a(ex1+)0,所以函数f(x)有唯一零点等价于方程1(x1)2a(ex1+)有唯一解,等价于函数y1(x1)2的图象与ya(ex1+)的图象只有一个交点当a0时,f(x)x22x1,此时有两个零点,矛盾;当a0时,由于y1(x1)2在(,1)上递增、在(1,+)上
15、递减,且ya(ex1+)在(,1)上递增、在(1,+)上递减,所以函数y1(x1)2的图象的最高点为A(1,1),ya(ex1+)的图象的最高点为B(1,2a),由于2a01,此时函数y1(x1)2的图象与ya(ex1+)的图象有两个交点,矛盾;当a0时,由于y1(x1)2在(,1)上递增、在(1,+)上递减,且ya(ex1+)在(,1)上递减、在(1,+)上递增,所以函数y1(x1)2的图象的最高点为A(1,1),ya(ex1+)的图象的最低点为B(1,2a),由题可知点A与点B重合时满足条件,即2a1,即a,符合条件;综上所述,a,方法二:f(x)x22x+a(ex2+ex+2)(x1)2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 全国 统一 高考 数学试卷 理科 新课
限制150内