2022年有理数知识点及经典题型总结讲义2 .pdf
《2022年有理数知识点及经典题型总结讲义2 .pdf》由会员分享,可在线阅读,更多相关《2022年有理数知识点及经典题型总结讲义2 .pdf(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载第 1 讲有 理 数教学目标1、掌握有理数的分类 , 学会把有理数对应的点画在数轴上; 2 、掌握相反数、绝对值、倒数的求法, 会比较有理数的大小; 3 、掌握有理数的大小比较; 4 、掌握有理数的加减乘除幂的运算法则,并会灵活解题。正数和负数正数和负数的概念负数:比 0 小的数正数:比 0 大的数0 既不是正数,也不是负数注意:字母 a 可以表示任意数, 当 a 表示正数时, -a 是负数;当 a 表示负数时, -a 是正数;当 a 表示 0 时,-a 仍是 0。 (如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如 +a,-a 就不能做出简单判断)正
2、数有时也可以在前面加“+” ,有时“+”省略不写。所以省略“ +”的正数的符号是正号。2. 具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上 8表示为: +8;零下 8表示为: -83.0 表示的意义0 表示“ 没有” ,如教室里有 0 个人,就是说教室里没有人;0 是正数和负数的分界线, 0 既不是正数,也不是负数。有理数1. 有理数的概念正整数、 0、负整数统称为整数( 0 和正整数统称为自然数)正分数和负分数统称为分数正整数, 0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。理解:只有能化成分数的数才是有理数。是无限不循环小数
3、,不能写成分数形式,不是有理数。有限小数和无限循环小数都可化成分数,都是有理数。注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8也是偶数, -1,-3,-5也是奇数。2. 有理数的分类按有理数的意义分类按正、负来分精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 15 页学习必备欢迎下载正整数正整数整数 0 正有理数负整数正分数有理数有理数0(0 不能忽视)正分数负整数分数负有理数负分数负分数总结: 正整数、 0 统称为非负整数(也叫自然数)负整数、 0 统称为非正整数正有理数、 0 统称为非负有理数负有理数、 0
4、统称为非正有理数数轴数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。注意:数轴是一条向两端无限延伸的直线;原点、正方向、单位长度是数轴的三要素,三者缺一不可; 同一数轴上的单位长度要统一;数轴的三要素都是根据实际需要规定的。2. 数轴上的点与有理数的关系所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示, 0 用原点表示。所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。 (如,数轴上的点 不是有理数)3. 利用数轴表示两数大小在数轴上数的大小比较,右边的数总比左边的数大;正数都
5、大于 0,负数都小于 0,正数大于负数;两个负数比较,距离原点远的数比距离原点近的数小。4. 数轴上特殊的最大(小)数最小的自然数是0,无最大的自然数;最小的正整数是1,无最大的正整数;最大的负整数是 -1,无最小的负整数精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 15 页学习必备欢迎下载5.a 可以表示什么数a0表示 a 是正数;反之, a 是正数,则 a0;a0表示 a 是负数;反之, a 是负数,则 a0时,-a0(正数的相反数是负数)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第
6、 3 页,共 15 页学习必备欢迎下载当 a0(负数的相反数是正数)当 a=0时,-a=0, (0 的相反数是 0)考试常考:已知a,b 互为相反数,立马要想到a+b=0. 6. 多重符号的化简多重符号的化简规律 : “+”号的个数不影响化简的结果,可以直接省略;“- ”号的个数决定最后化简结果;即:“- ”的个数是奇数时,结果为负, “-”的个数是偶数时,结果为正。练习 1. )213()514()5()2(绝对值绝对值的几何定义一般地,数轴上表示数a 的点与原点的距离叫做a 的绝对值,记作 |a| 。2. 绝对值的代数定义一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值
7、是 0. 可用字母表示为:如果 a0,那么 |a|=a ;如果 a0,那么 |a|=-a ;如果 a=0,那么 |a|=0 。可归纳为:a0, |a|=a (非负数的绝对值等于本身; 绝对值等于本身的数是非负数。 )a0, |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。 )3. 绝对值的性质任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a 取任何有理数,都有|a| 0。即:0 的绝对值是 0;绝对值是 0 的数是 0. 即:a=0 |a|=0 ;一个数的绝对值是非负数,绝对值最小的数是0. 即:|a| 0;任何数的绝对值都不小于原数。即:|a|
8、 a;绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a (a0) ,则 x=a;互为相反数的两数的绝对值相等。即:|-a|=|a|或若 a+b=0,则|a|=|b|;绝对值相等的两数相等或互为相反数。即:|a|=|b|,则 a=b 或 a=-b;若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则 a=0 且 b=0。(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 15 页学习必备欢迎下载4. 有理数大小的比较利用数轴比较两个数的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年有理数知识点及经典题型总结讲义2 2022 有理数 知识点 经典 题型 总结 讲义
限制150内