2022年新人教版八年级数学下册二次根式的知识点汇总 .pdf
《2022年新人教版八年级数学下册二次根式的知识点汇总 .pdf》由会员分享,可在线阅读,更多相关《2022年新人教版八年级数学下册二次根式的知识点汇总 .pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、名师总结优秀知识点二次根式的知识点汇总知识点一:二次根式的概念形如()的式子叫做二次根式。注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,等是二次根式,而,等都不是二次根式。例 1下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x(x0) 、0、42、-2、1xy、xy(x0,y?0) 分析:二次根式应满足两个条件:第一,有二次根号“” ;第二,被开方数是正数或0知识点二:取值范围1、二次根式有意义的条件:由二次根式的意义可知,当a0 时,有意义,是二次根式,所以要使二次根式有意义,只要使被开
2、方数大于或等于零即可。2、二次根式无意义的条件:因负数没有算术平方根,所以当a0 时,没有意义。例 2当 x 是多少时,31x在实数范围内有意义?例 3当 x 是多少时,23x+11x在实数范围内有意义?知识点三:二次根式()的非负性()表示 a 的算术平方根,也就是说,()是一个非负数,即0()。注:因为二次根式()表示 a 的算术平方根,而正数的算术平方根是正数,0 的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则 a=0,b=0 ;若,则 a=0,b=0 ;若,则 a=0,
3、b=0 。例 4(1)已知 y=2x+2x+5,求xy的值 (2)若1a+1b=0,求 a2004+b2004的值精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 4 页名师总结优秀知识点知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。注: 二次根式的性质公式() 是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若,则,如:,. 例 1 计算1 (32)22 ( 35)23 (56)24 (72)2 例 2 在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3
4、 知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。注:1、化简时,一定要弄明白被开方数的底数a 是正数还是负数,若是正数或0,则等于a 本身,即;若 a 是负数,则等于a 的相反数 -a, 即;2、中的 a 的取值范围可以是任意实数,即不论a 取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。例 1 化简(1)9(2)2( 4)(3)25(4)2( 3)例 2 填空:当a 0 时,2a=_;当 aa,则 a 是什么数?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 4 页名师总
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年新人教版八年级数学下册二次根式的知识点汇总 2022 新人 八年 级数 下册 二次 根式 知识点 汇总
限制150内