多元统计分析重点.doc
《多元统计分析重点.doc》由会员分享,可在线阅读,更多相关《多元统计分析重点.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流多元统计分析重点.精品文档.多元统计分析重点宿舍版第一讲:多元统计方法及应用;多元统计方法分类(按变量、模型、因变量等) 多元统计分析应用选择题:数据或结构性简化运用的方法有:多元回归分析,聚类分析,主成分分析,因子分析 分类和组合运用的方法有:判别分析,聚类分析,主成分分析 变量之间的相关关系运用的方法有:多元回归,主成分分析,因子分析, 预测与决策运用的方法有:多元回归,判别分析,聚类分析 横贯数据:多元统计分析方法选择题:多元统计方法的分类:1)按测量数据的来源分为:横贯数据(同一时间不同案例的观测数据),纵观数据(同样案例在不同时间的
2、多次观测数据) 2)按变量的测度等级(数据类型)分为:类别(非测量型)变量,数值型(测量型)变量 3)按分析模型的属性分为:因果模型,相依模型 4)按模型中因变量的数量分为:单因变量模型,多因变量模型,多层因果模型第二讲:计算均值、协差阵、相关阵;相互独立性第三讲:主成分定义、应用及基本思想,主成分性质,主成分分析步骤主成分定义:何谓主成分分析 就是将原来的多个指标(变量)线性组合成几个新的相互无关的综合指标(主成分),并使新的综合指标尽可能多地反映原来的指标信息。 主成分分析的应用 :(1)数据的压缩、结构的简化;(2)样品的综合评价,排序主成分分析概述思想:(1)把给定的一组变量X1,X2
3、,XP,通过线性变换,转换为一组不相关的变量Y1,Y2,YP。(2)在这种变换中,保持变量的总方差(X1,X2,Xp的方差之和)不变,同时,使Y1具有最大方差,称为第一主成分;Y2具有次大方差,称为第二主成分。依次类推,原来有P个变量,就可以转换出P个主成分(3)在实际应用中,为了简化问题,通常找能够反映原来P个变量的绝大部分方差的q(qp)个主成分。主成分性质:1)性质1:主成分的协方差矩阵是对角阵:(2)性质2:主成分的总方差等于原始变量的总方差(3)性质3:主成分Yk与原始变量Xi的相关系数为:(YK,Xi)=tki,并称之为因子负荷量(或因子载荷量)。主成分分析的具体步骤:将原始数据标
4、准化;建立变量的相关系数阵;求的特征根为,相应的特征向量为;由累积方差贡献率确定主成分的个数(m ),并写出主成分为,第四讲:因子分析定义,因子载荷统计意义,因子分析模型及假设,因子旋转因子分析定义:因子分析就是通过对多个变量的相关系数矩阵的研究,找出同时影响或支配所有变量的共性因子的多元统计方法。因子载荷统计意义:1因子载荷的统计意义对于因子模型我们可以得到,与的协方差为:如果对作了标准化处理,的标准差为1,且的标准差为1,因此 (7.6)那么,从上面的分析,我们知道对于标准化后的,是与的相关系数,它一方面表示对的依赖程度,绝对值越大,密切程度越高;另一方面也反映了变量对公共因子的相对重要性
5、。了解这一点对我们理解抽象的因子含义有非常重要的作用。2变量共同度的统计意义设因子载荷矩阵为,称第行元素的平方和,即 (7.7)为变量的共同度。由因子模型,知 (7.8)这里应该注意,(7.8)式说明变量的方差由两部分组成:第一部分为共同度,它描述了全部公共因子对变量的总方差所作的贡献,反映了公共因子对变量的影响程度。第二部分为特殊因子对变量的方差的贡献,通常称为个性方差。如果对作了标准化处理,有 (7.9)3、公因子的方差贡献的统计意义设因子载荷矩阵为,称第列元素的平方和,即为公共因子对的贡献,即表示同一公共因子对各变量所提供的方差贡献之总和,它是衡量每一个公共因子相对重要性的一个尺度。因子
6、分析模型及假设数学模型:每一个变量都可以表示成公共因子的线性函数与特殊因子之和,即:Xi=ai1*F1+a12*F2+aim*Fm+i (i=1,2,p)式中的F1,F2,Fm称为公共因子,i称为Xi的特殊因子。该模型可用矩阵表示为:X=AF+,且满足:(1)mp(2)Cov(F,)=0,即公共因子与特殊因子是不相关的;(3)DF=D(F)=Im,即各个公共因子不相关且方差为1;(4)D=D()=,即各个特殊因子不相关,方差不要求相等。因子旋转因子旋转的目的:初始因子的综合性太强,难以找出因子的实际意义,因此需要通过坐标旋转,使因子负荷两极分化, 要么接近于0,要么接近于1,从而降低因子的综合
7、性,使其实际意义凸现出来,以便于解释因子。因子旋转的基本方法:一类是正交旋转(保持因子间的正交性,3种,常用最大方差旋转),一类是斜交旋转(因子间不一定正交)公共因子提取个数:(1)选特征值大于等于1的因子(主成分)作为初始因子,通过求响应的标准化正交特征向量来计算因子载荷(2)碎石图:删去特征值变平缓的那些因子(3)累计方差贡献率大于85%第五讲:聚类类型,系统聚类、K-均值聚类思想及步骤,系统聚类方法,相似性测度方法 聚类类型:根据分类的对象可将聚类分析分为:系统Q型与R型(即样品聚类与变量聚类)系统聚类、K-均值聚类思想及步骤:系统聚类的基本思想:距离相近的样本(或变量)先聚成类,距离相
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多元 统计分析 重点
限制150内