多元回归分析SPSS案例39328.doc
《多元回归分析SPSS案例39328.doc》由会员分享,可在线阅读,更多相关《多元回归分析SPSS案例39328.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流多元回归分析SPSS案例39328.精品文档.多元回归分析在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。可以建立因变量y与各自变量xj(j=1,2,3,n)之间的多元线性回归模型:其中:b0是回归常数;bk(k=1,2,3,n)是回归参数;e是随机误差。多元回归在病虫预报中的应用实例:某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量(头);x2为4月上、中旬百束小谷草把累计落卵量(块);x3为4月中旬降水量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫发生量y(头/
2、m2)。分级别数值列成表2-1。 预报量y:每平方米幼虫010头为1级,1120头为2级,2140头为3级,40头以上为4级。 预报因子:x1诱蛾量0300头为l级,301600头为2级,6011000头为3级,1000头以上为4级;x2卵量0150块为1级,15l300块为2级,301550块为3级,550块以上为4级;x3降水量010.0毫米为1级,10.113.2毫米为2级,13.317.0毫米为3级,17.0毫米以上为4级;x4雨日02天为1级,34天为2级,5天为3级,6天或6天以上为4级。 表2-1 x1 x2 x3 x4 y年 蛾量 级别 卵量 级别 降水量 级别 雨日 级别 幼
3、虫密度 级别 19601022411214.31211011961300144030.111141196269936717.511191196318764675417.147455419654318011.9121111966422220101013119678063510311.82322831976115124020.612171197171831460418.444245419728033630413.433226319735722280213.224216219742641330342.243219219751981165271.84532331976461214017.5153283
4、19777693640444.7432444197825516510101112数据保存在“DATA6-5.SAV”文件中。1)准备分析数据 在SPSS数据编辑窗口中,创建“年份”、“蛾量”、“卵量”、“降水量”、“雨日”和“幼虫密度”变量,并输入数据。再创建蛾量、卵量、降水量、雨日和幼虫密度的分级变量“x1”、“x2”、“x3”、“x4”和“y”,它们对应的分级数值可以在SPSS数据编辑窗口中通过计算产生。编辑后的数据显示如图2-1。图2-1或者打开已存在的数据文件“DATA6-5.SAV”。2)启动线性回归过程单击SPSS主菜单的“Analyze”下的“Regression”中“Linea
5、r”项,将打开如图2-2所示的线性回归过程窗口。图2-2 线性回归对话窗口3) 设置分析变量设置因变量:用鼠标选中左边变量列表中的“幼虫密度y”变量,然后点击“Dependent”栏左边的向右拉按钮,该变量就移到“Dependent”因变量显示栏里。设置自变量:将左边变量列表中的“蛾量x1”、“卵量x2”、“降水量x3”、“雨日x4”变量,选移到“Independent(S)”自变量显示栏里。 设置控制变量: 本例子中不使用控制变量,所以不选择任何变量。选择标签变量: 选择“年份”为标签变量。选择加权变量: 本例子没有加权变量,因此不作任何设置。4)回归方式本例子中的4个预报因子变量是经过相关
6、系数法选取出来的,在回归分析时不做筛选。因此在“Method”框中选中“Enter”选项,建立全回归模型。 5)设置输出统计量单击“Statistics”按钮,将打开如图2-3所示的对话框。该对话框用于设置相关参数。其中各项的意义分别为:图2-3 “Statistics”对话框“Regression Coefficients”回归系数选项:“Estimates”输出回归系数和相关统计量。“Confidence interval”回归系数的95%置信区间。“Covariance matrix”回归系数的方差-协方差矩阵。本例子选择“Estimates”输出回归系数和相关统计量。“Residual
7、s”残差选项:“Durbin-Watson”Durbin-Watson检验。“Casewise diagnostic”输出满足选择条件的观测量的相关信息。选择该项,下面两项处于可选状态:“Outliers outside standard deviations”选择标准化残差的绝对值大于输入值的观测量;“All cases”选择所有观测量。本例子都不选。 其它输入选项“Model fit”输出相关系数、相关系数平方、调整系数、估计标准误、ANOVA表。“R squared change”输出由于加入和剔除变量而引起的复相关系数平方的变化。“Descriptives”输出变量矩阵、标准差和相关系
8、数单侧显著性水平矩阵。“Part and partial correlation”相关系数和偏相关系数。“Collinearity diagnostics”显示单个变量和共线性分析的公差。本例子选择“Model fit”项。 6)绘图选项在主对话框单击“Plots”按钮,将打开如图2-4所示的对话框窗口。该对话框用于设置要绘制的图形的参数。图中的“X”和“Y”框用于选择X轴和Y轴相应的变量。图2-4“Plots”绘图对话框窗口左上框中各项的意义分别为: “DEPENDNT”因变量。 “ZPRED”标准化预测值。 “ZRESID”标准化残差。 “DRESID”删除残差。 “ADJPRED”调节预
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多元 回归 分析 SPSS 案例 39328
限制150内