微积分下册期末试卷及答案[1].doc
《微积分下册期末试卷及答案[1].doc》由会员分享,可在线阅读,更多相关《微积分下册期末试卷及答案[1].doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流微积分下册期末试卷及答案1.精品文档.1、已知,则_.2、已知,则_.3、函数在点取得极值.4、已知,则_.5、以(为任意常数)为通解的微分方程是_.6 知与均收敛,则常数的取值范围是( c ).(A) (B) (C) (D) 7 数在原点间断,是因为该函数( b ).(A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值8、若,则下列关系式成立的是( a). (A) (B) (C) (D) 9、方程具有特解(d ). (A) (B) (C) (D) 10、设收敛,则(
2、d ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定一、填空题(每小题3分,共15分)1、. 2、. 3、. 4、1. 5、.11、求由,所围图形绕轴旋转的旋转体的体积.解:的函数为。且时,。于是 12、求二重极限 . 解:原式 (3分) (6分)13、由确定,求.解:设,则 , (3分) (6分)14、用拉格朗日乘数法求在条件下的极值.解: 令,得,为极小值点. (3分)故在下的极小值点为,极小值为 (6分)15、计算.解: (6分)6、计算二重积分,其中是由轴及圆周所围成的在第一象限内的区域.解: (6分)17、解微分方程.解:令,方程化为,于是 (3分) (6分)18、
3、判别级数的敛散性.解: (3分) 因为 19、将函数展开成的幂级数,并求展开式成立的区间.解:由于,已知 , (3分)那么 ,. (6分20、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入(万元)与电台广告费用(万元)的及报纸广告费用(万元)之间的关系有如下的经验公式:求最优广告策略 解:公司利润为令即得驻点,而 (3分)所以最优广告策略为:电台广告费用(万元),报纸广告费用(万元). (6分)四、证明题(每小题5分,共10分)21、设,证明:.证:22、若与都收敛,则收敛.证:由于, (3分)并由题设知与都收敛,则收敛,从而收敛。 (6分)1、设,则_.2、已知,则
4、_.3、设函数在点取得极值,则常数4、已知,则_5、以(为任意常数)为通解的微分方程是_.6、已知与均收敛,则常数的取值范围是( ).(A) (B) (C) (D) 7、对于函数,点( ).(A) 不是驻点 (B) 是驻点而非极值点 (C) 是极大值点 (D) 是极小值8、已知,其中为,则( ).(A) (B) (C) (D) 9、方程具有特解( ). (A) (B) (C) (D) 10、级数收敛,则级数( ).(A) 条件收敛 (B) 绝对收敛 (C) 发散 (D) 敛散性不定11、求,所围图形绕轴旋转的旋转体的体积.12、求二重极限. 13、设,求.14、用拉格朗日乘数法求在满足条件下的
5、极值.15、计算.16、计算二重积分,其中是由轴及圆周所围成的在第一象限内的区域.17、解微分方程.18、判别级数的敛散性.19、将函数展开成的幂级数.20、某工厂生产甲、乙两种产品,单位售价分别为40元和60元,若生产单位甲产品,生产单位乙产品的总费用为,试求出甲、乙两种产品各生产多少时该工厂取得最大利润.21、设,证明22、若与都收敛,则收敛.(可能会有错误大家一定要自己核对)一、填空题(每小题3分,共15分)1、设,且当时,则 。2、计算广义积分= 。()3、设,则 。()4、微分方程具有 形式的特解.()5、设,则_。(1)二、选择题(每小题3分,共15分)1、的值为 ( A )A.3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分 下册 期末试卷 答案
限制150内