应用多元统计分析习题解答 第七章.docx
《应用多元统计分析习题解答 第七章.docx》由会员分享,可在线阅读,更多相关《应用多元统计分析习题解答 第七章.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流应用多元统计分析习题解答 第七章.精品文档.第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。答:因子分析与主成分分析的联系是:两种分析方法都是一种降维、简化数据的技术。两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。因子分析也可以说成是主成分分析的逆问题。如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度
2、大的方向上为止,突出数据变异的方向,归纳重要信息。而因子分析是从显在变量去提炼潜在因子的过程。此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。具体来说,因子分析可以用于分类。如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等因子分析可以用于探索潜在因素。即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。对我们进一步研究与探讨指示方向。在社会调查分析中十分常
3、用。因子分析的另一个作用是用于时空分解。如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。7.3 简述因子模型中载荷矩阵A的统计意义。 答:对于因子模型因子载荷阵为与的协方差为:若对作标准化处理,=,因此 一方面表示对的依赖程度;另一方面也反映了变量对公共因子的相对重要性。变量共同度 说明变量的方差由两部分组成:第一部分为共同度,它描述了全部公共因子对变量的总方差所作的贡献,反映了公共因子对变量的影响程度。第二部分为特殊因子对变量的方差的贡献,通常称为个性方差。而公共因子对的贡献表示同一公共因子对各变量所提供的方差
4、贡献之总和,它是衡量每一个公共因子相对重要性的一个尺度。7.4 在进行因子分析时,为什么要进行因子旋转?最大方差因子旋转的基本思路是什么?答:因子分析的目标之一就是要对所提取的抽象因子的实际含义进行合理解释。但有时直接根据特征根、特征向量求得的因子载荷阵难以看出公共因子的含义。这种因子模型反而是不利于突出主要矛盾和矛盾的主要方面的,也很难对因子的实际背景进行合理的解释。这时需要通过因子旋转的方法,使每个变量仅在一个公共因子上有较大的载荷,而在其余的公共因子上的载荷比较小。最大方差旋转法是一种正交旋转的方法,其基本思路为:A其中令 的第列元素平方的相对方差可定义为最大方差旋转法就是选择正交矩阵,
5、使得矩阵所有m个列元素平方的相对方差之和达到最大。7.5 试分析因子分析模型与线性回归模型的区别与联系。答:因子分析模型是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法的模型。而线性回归模型回归分析的目的是设法找出变量间的依存(数量)关系, 用函数关系式表达出来。因子分析模型中每一个变量都可以表示成公共因子的线性函数与特殊因子之和。即,() 该模型可用矩阵表示为: 而回归分析模型中多元线性回归方程模型为: 其中是常数项,是偏回归系数,是残差。 因子模型满足:(1); (2),即公共因子与特殊因子是不相关的;(3),即各个公共因子不相关且方差为1;(4),即各个特殊因子不相
6、关,方差不要求相等。而回归分析模型满足(1)正态性:随机误差(即残差)e服从均值为 0,方差为s的正态分布;(2)等方差:对于所有的自变量x,残差e的条件方差为s ,且s为常数;(3)独立性:在给定自变量x的条件下,残差e的条件期望值为0(本假设又称零均值假设);(4)无自相关性:各随机误差项e互不相关。两种模型的联系在于都是线性的。因子分析的过程就是一种线性变换。7.6 设某客观现象可用X=()来描述, 在因子分析时,从约相关阵出发计算出特征值为 由于,所以找前两个特征值所对应的公共因子即可, 又知对应的正则化特征向量分别为(0.707,-0.316,0.632)及(0,0.899,0.44
7、70),要求:(1)计算因子载荷矩阵A,并建立因子模型。(2)计算共同度。(3)计算第一公因子对X 的“贡献”。解:(1)根据题意,A=建立因子模型为(2) (3)因为是从约相关阵计算的特征值,所以公共因子对X的“贡献”为。7.7 利用因子分析方法分析下列30个学生成绩的因子构成,并分析各个学生较适合学文科还是理科。序号数学物理化学语文历史英语1656172848179277777664705536763496567574806975747463574708084817467884756271647667167526557877715772867198310079416750108694975
8、1635511748088647366126784535866561381626956665214716494526152157896818089761669566775948017779080686660188467756070631962678371857720746575729073219174976271662272877279837623827083687785246370609185822574799559745926666177627364279082984771602877908568737629918284546260307884100516060解:令数学成绩为X1,物理为
9、X2 ,化学为X3 ,语文为X4 ,历史为X5,英语为X1,用spss分析学生成绩的因子构成的步骤如下:1. 在SPSS窗口中选择AnalyzeData ReductionFactor,调出因子分析主界面,并将六个变量移入Variables框中。图7.1 因子分析主界面2. 点击Descriptives按钮,展开相应对话框,见图7.2。选择Initial solution复选项。这个选项给出各因子的特征值、各因子特征值占总方差的百分比以及累计百分比。单击Continue按钮,返回主界面。图7.2 Descriptives子对话框3. 点击Extraction按钮,设置因子提取的选项,见图7.3
10、。在Method下拉列表中选择因子提取的方法,SPSS提供了七种提取方法可供选择,一般选择默认选项,即“主成分法”。在Analyze栏中指定用于提取因子的分析矩阵,分别为相关矩阵和协方差矩阵。在Display栏中指定与因子提取有关的输出项,如未旋转的因子载荷阵和因子的碎石图。在Extract栏中指定因子提取的数目,有两种设置方法:一种是在Eigenvalues over后的框中设置提取的因子对应的特征值的范围,系统默认值为1,即要求提取那些特征值大于1的因子;第二种设置方法是直接在Number of factors后的矩形框中输入要求提取的公因子的数目。这里我们均选择系统默认选项,单击Cont
11、inue按钮,返回主界面。图7.3 Extraction子对话框4.点击Rotation按钮,设置因子旋转的方法。这里选择Varimax(方差最大旋转),并选择Display栏中的Rotated solution复选框,在输出窗口中显示旋转后的因子载荷阵。单击Continue按钮,返回主界面。图7.4 Rotation子对话框5.点击Scores按钮,设置因子得分的选项。选中Save as variables复选框,将因子得分作为新变量保存在数据文件中。选中Display factor score coefficient matrix复选框,这样在结果输出窗口中会给出因子得分系数矩阵。单击Co
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 应用多元统计分析习题解答 第七章 应用 多元 统计分析 习题 解答 第七
限制150内