椭圆,双曲线,抛物线特性总结.doc
《椭圆,双曲线,抛物线特性总结.doc》由会员分享,可在线阅读,更多相关《椭圆,双曲线,抛物线特性总结.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流椭圆,双曲线,抛物线特性总结4、常用的公式及结论:(1)对于给定的椭圆的标准方程,要判断焦点在哪个轴上,只需比较其与、项分母的大小即可。若项分母大,则焦点在轴上;若项分母大,则焦点在轴上。(2)对于椭圆的两种标准方程,都有,焦点都在长轴上,且a、b、c始终满足5、直线与椭圆的位置关系掌握直线与椭圆的位置关系,通过对直线方程与椭圆方程组成的二元二次方程组的解来讨论它们的位置关系。(1)若方程组消元后得到一个一元二次方程,则根据来讨论。(2)对于直线与椭圆的位置关系,还可以利用“数形结合,以形助数”的方法来解决。图形特征几何性质范围顶点焦点准线对
2、称性长短轴离心率焦半径弦长公式:|AB|若用k,y1及y2表示|AB|,则|AB|标准方程1(a0,b0)1(a0,b0)简图中心O(0,0)O(0,0)顶点A1(a,0),A2(a,0)B1(0,a),B2(0,a)范围|x|a|y|a焦点F1(c,0),F2(c,0)F1(0,c),F2(0,c)准线xy渐近线yxyx4. 焦半径公式(1)当M(x0,y0)为1右支上的点时,则|MF1|ex0a,|MF2|ex0a。(2)当M(x0,y0)为1左支上的点时,|MF1|(ex0a),|MF2|。(3)当M(x0,y0)为1上支上的点时,|MF1|ey0a,|MF2|ey0a。(4)当为下支上
3、的点时,5. 常用的公式结论:(1)对于双曲线的两种标准方程,a、b、c始终满足(2)由给定条件求双曲线的方程,常用待定系数法。首先是根据焦点位置设出方程的形式(含有参数),再由题设条件确定参数值。应特别注意:当焦点位置不确定时,方程可能有两种形式,应防止遗漏。已知渐近线的方程bxay0,求双曲线方程,可设双曲线方程为b2x2a2y2(0),再根据其他条件确定的值。若求得0,则焦点在x轴上,若求得0,则焦点在y轴上。(3)由已知双曲线的方程求基本量,注意首先应将方程化为标准形式,再计算,并要特别注意焦点的位置,防止将焦点坐标和准线方程写错。(4)在解题过程中,应重视对双曲线两种定义的灵活应用,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 椭圆 双曲线 抛物线 特性 总结
限制150内