最大似然估计法.doc
《最大似然估计法.doc》由会员分享,可在线阅读,更多相关《最大似然估计法.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流最大似然估计法.精品文档.最大似然估计法的基本思想最大似然估计法的思想很简单:在已经得到试验结果的情况下,我们应该寻找使这个结果出现 的可能性最大的那个作为真的估计。我们分两种情进行分析:1离散型总体设为离散型随机变量,其概率分布的形式为,则样本的概率分布为,在固定时,上式表示取值的概率;当固定时,它是的函数,我们把它记为并称为似然函数。似然函数的值的大小意味着该样本值出现的可能性的大小。既然已经得到了样本值,那它出现的可能性应该是大的,即似然函数的值应该是大的。因而我们选择使达到最大值的那个作为真的估计。2连续型总体设为连续型随机变量,其概
2、率密度函数为则为从该总体抽出的样本。因为相互独立且同分布,于是,样本的联合概率密度函数为,在是固定时,它是在处的 密度,它的大小与落在附近的概率的大小成正比,而当样本值固定时,它是的函数。我们仍把它记为并称为似然函数。类似于刚才的讨论,我们选择使最大的那个作为真的估计。总之,在有了试验结果即样本值时,似然函数反映了的各个不同值导出这个结果的可能性的大小。 我们选择使达到最大值的那个作为真的估计。这种求点估计的方法就叫作最大似然法。 7.2.2最大似然估计的求法假定现在我们已经观测到一组样本要去估计未知参数。一种直观的想法是,哪一组能数值使现在的样本出现的可能性最大,哪一组参数可能就是真正的参数
3、,我们就要用它作为参数的估计值。这 里,假定我们有一组样本.如果对参数的两组不同的值和,似然函数有如下关系,那么,从又是概率密度函数的角度来看,上式的意义就是参数使出现的可能性比参数使出现的可能性大,当然参数比更像是真正的参数.这样的分析就导致了参数估计的一种方法,即用使似然函数 达到最大值的点,作为未知参数的估计,这就是所谓的最大似然估计。 现在我们讨论求最大似然估计的具体方法.为简单起见,以下记,求的极大似然估计就归结为求的最大值点.由于对数函数是单调增函数,所以 (7.2.1)与有相同的最大值点。而在许多情况下,求的最大值点比较简单,于是,我们就将求的最大值点改为求的最大值点.对关于求导
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最大 估计
限制150内