材料力学公式大全(机械).doc
《材料力学公式大全(机械).doc》由会员分享,可在线阅读,更多相关《材料力学公式大全(机械).doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流材料力学公式大全(机械).精品文档.材料力学常用公式 1. 外力偶矩计算公式 (P功率,n转速) 2. 弯矩、剪力和荷载集度之间的关系式 3. 轴向拉压杆横截面上正应力的计算公式 (杆件横截面轴力FN,横截面面积A,拉应力为正) 4. 轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5. 纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1) 6. 纵向线应变和横向线应变 7. 泊松比 8. 胡克定律 9. 受多个力作用的杆件纵向变形计算公式? 10. 承
2、受轴向分布力或变截面的杆件,纵向变形计算公式 11. 轴向拉压杆的强度计算公式 12. 许用应力 , 脆性材料 ,塑性材料 13. 延伸率 14. 截面收缩率 15. 剪切胡克定律(切变模量G,切应变g ) 16. 拉压弹性模量E、泊松比和切变模量G之间关系式 17. 圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18. 圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r ) 19. 圆截面周边各点处最大切应力计算公式 20. 扭转截面系数 ,(a)实心圆 (b)空心圆 21. 薄壁圆管(壁厚 R0 /10 ,R0 为圆管的平均半径)扭转切应力计算公式 22. 圆轴扭转角与
3、扭矩T、杆长l、 扭转刚度GHp的关系式 23. 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时 或 24. 等直圆轴强度条件 25. 塑性材料 ;脆性材料 26. 扭转圆轴的刚度条件? 或 27. 受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 28. 平面应力状态下斜截面应力的一般公式 , 29. 平面应力状态的三个主应力 , , 30. 主平面方位的计算公式 31. 面内最大切应力 32. 受扭圆轴表面某点的三个主应力, , 33. 三向应力状态最大与最小正应力 , 34. 三向应力状态最大切应力 35. 广义胡克定律 36. 四种强度理论的相当应力 37. 一种
4、常见的应力状态的强度条件 , 38. 组合图形的形心坐标计算公式 , 39. 任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式 40. 截面图形对轴z和轴y的惯性半径? , 41. 平行移轴公式(形心轴zc与平行轴z1的距离为a,图形面积为A) 42. 纯弯曲梁的正应力计算公式 43. 横力弯曲最大正应力计算公式 44. 矩形、圆形、空心圆形的弯曲截面系数? , , 45. 几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度) 46. 矩形截面梁最大弯曲切应力发生在中性轴处 47. 工字形截面梁腹板上的弯曲切应
5、力近似公式 48. 轧制工字钢梁最大弯曲切应力计算公式 49. 圆形截面梁最大弯曲切应力发生在中性轴处 50. 圆环形薄壁截面梁最大弯曲切应力发生在中性轴处 51. 弯曲正应力强度条件 52. 几种常见截面梁的弯曲切应力强度条件 53. 弯曲梁危险点上既有正应力又有切应力作用时的强度条件 或 , 54. 梁的挠曲线近似微分方程 55. 梁的转角方程 56. 梁的挠曲线方程? 57. 轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式 58. 偏心拉伸(压缩) 59. 弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式 , 60. 圆截面杆横截面上有两个弯矩
6、和同时作用时,合成弯矩为 61. 圆截面杆横截面上有两个弯矩和同时作用时强度计算公式 62. 弯拉扭或弯压扭组合作用时强度计算公式 63. 剪切实用计算的强度条件 64. 挤压实用计算的强度条件 65. 等截面细长压杆在四种杆端约束情况下的临界力计算公式 66. 压杆的约束条件:(a)两端铰支 =l(b)一端固定、一端自由 =2(c)一端固定、一端铰支 =0.7(d)两端固定 =0.5 67. 压杆的长细比或柔度计算公式 , 68. 细长压杆临界应力的欧拉公式 69. 欧拉公式的适用范围 70. 压杆稳定性计算的安全系数法 71. 压杆稳定性计算的折减系数法 72. 关系需查表求得 1、 材料
7、力学的任务:强度、刚度和稳定性;应力 单位面积上的内力。平均应力 (1.1)全应力 (1.2)正应力 垂直于截面的应力分量,用符号表示。切应力 相切于截面的应力分量,用符号表示。应力的量纲:线应变 单位长度上的变形量,无量纲,其物理意义是构件上一点沿某一方向变形量的大小。外力偶矩传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n与传递的功率P来计算。当功率P单位为千瓦(kW),转速为n(r/min)时,外力偶矩为当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为拉(压)杆横截面上的正应力拉压杆件横截面上只有正应力,且为平均分布,其计算公式为 (3-1)式中为该横截面的轴力,
8、A为横截面面积。正负号规定 拉应力为正,压应力为负。公式(3-1)的适用条件:(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;(2)适用于离杆件受力区域稍远处的横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;(4)截面连续变化的直杆,杆件两侧棱边的夹角时拉压杆件任意斜截面(a图)上的应力为平均分布,其计算公式为全应力 (3-2)正应力 (3-3)切应力 (3-4)式中为横截面上的应力。正负号规定:由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。 拉应力为正,压应力为负。 对脱离体内一点产生顺时针力矩的为正,反之为负。两点结
9、论:(1)当时,即横截面上,达到最大值,即。当=时,即纵截面上,=0。(2)当时,即与杆轴成的斜截面上,达到最大值,即12 拉(压)杆的应变和胡克定律(1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。如图3-2。图3-2轴向变形 轴向线应变 横向变形 横向线应变 正负号规定 伸长为正,缩短为负。(2)胡克定律当应力不超过材料的比例极限时,应力与应变成正比。即 (3-5)或用轴力及杆件的变形量表示为 (3-6)式中EA称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。公式(3-6)的适用条件:(a)材料在线弹性范围内工作,即;(b)在计算时,
10、l长度内其N、E、A均应为常量。如杆件上各段不同,则应分段计算,求其代数和得总变形。即 (3-7)(3)泊松比 当应力不超过材料的比例极限时,横向应变与轴向应变之比的绝对值。即 (3-8)表1-1 低碳钢拉伸过程的四个阶段阶 段图1-5中线段特征点说 明弹性阶段oab比例极限弹性极限为应力与应变成正比的最高应力为不产生残余变形的最高应力屈服阶段bc屈服极限为应力变化不大而变形显著增加时的最低应力强化阶段ce抗拉强度为材料在断裂前所能承受的最大名义应力局部形变阶段ef产生颈缩现象到试件断裂表1-2 主要性能指标性能性能指标说明弹性性能弹性模量E当强度性能屈服极限材料出现显著的塑性变形抗拉强度材料
11、的最大承载能力塑性性能延伸率材料拉断时的塑性变形程度截面收缩率材料的塑性变形程度强度计算许用应力 材料正常工作容许采用的最高应力,由极限应力除以安全系数求得。塑性材料 = ; 脆性材料 =其中称为安全系数,且大于1。强度条件:构件工作时的最大工作应力不得超过材料的许用应力。对轴向拉伸(压缩)杆件 (3-9)按式(1-4)可进行强度校核、截面设计、确定许克载荷等三类强度计算。2.1 切应力互等定理受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小相等,方向同时垂直指向或者背离两截面交线,且与截面上存在正应力与否无关。2.2纯剪切单元体各侧面上只有切应力而无正应力的受力状态,称为纯
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料力学 公式 大全 机械
限制150内