机械控制工程基础第五章 练习习题及 解答.doc
《机械控制工程基础第五章 练习习题及 解答.doc》由会员分享,可在线阅读,更多相关《机械控制工程基础第五章 练习习题及 解答.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流机械控制工程基础第五章 练习习题及 解答.精品文档.习题一 题型:选择题题目:关于系统稳定的说法错误的是【】A线性系统稳定性与输入无关B线性系统稳定性与系统初始状态无关C非线性系统稳定性与系统初始状态无关D非线性系统稳定性与系统初始状态有关分析与提示:线性系统稳定性与输入无关;非线性系统稳定性与系统初始状态有关。答案:C习题二题型:填空题题目:判别系统稳定性的出发点是系统特征方程的根必须为 或为具有负实部的复数,即系统的特征根必须全部在 是系统稳定的充要条件。分析与提示:判别系统稳定性的出发点是系统特征方程的根必须为负实数或为具有负实部的复数
2、,即系统的特征根必须全部在复平面的左半平面是系统稳定的充要条件。答案:负实数、复平面的左半平面习题三题型:选择题题目:一个线性系统稳定与否取决于【】A系统的结构和参数B系统的输入C系统的干扰D系统的初始状态分析与提示:线性系统稳定与否取决于系统本身的结构和参数。答案:A习题四题型:填空题题目:若系统在 的影响下,响应随着时间的推移,逐渐衰减并回到平衡位置,则称该系统是稳定的分析与提示:若系统在初始状态的影响下(零输入),响应随着时间的推移,逐渐衰减并趋向于零(回到平衡位置),则称该系统是稳定的;反之,若系统的零输入响应发散,则系统是不稳定的。答案:初始状态习题五题型:填空题题目:系统的稳定决定
3、于 的解。分析与提示:系统的稳定决定于特征方程的解。答案:特征方程习题一 题型:填空题题目:胡尔维兹(Hurwitz)判据、劳斯(Routh)判据又称为 判据。分析与提示:胡尔维兹(Hurwitz)判据、劳斯(Routh)判据,又称为代数稳定性判据。答案:代数稳定性习题二题型:填空题题目:利用胡尔维兹判据,则系统稳定的充要条件为:特征方程的各项系数均为 ;各阶子行列式都 。分析与提示:胡尔维兹判据系统稳定的充要条件为:特征方程的各项系数均为正;各阶子行列式都大于零。答案:正、大于零习题三题型:计算题题目:系统的特征方程为用胡尔维兹判据判别系统的稳定性。分析与提示:利用胡尔维兹判据,其各阶系数均
4、大于零,计算子行列式。答案:(1)特征方程的各项系数为均为正值。(2)不满足胡尔维兹行列式全部为正的条件,所以系统不稳定习题四题型:计算题题目:单位反馈系统的开环传递函数为利用胡尔维兹判据求使系统稳定的K值范围。分析与提示:利用胡尔维兹判据,其各阶系数均大于零,计算子行列式,反求出K的范围。答案:系统的闭环特征方程为即其各阶系数为根据胡尔维兹判据条件(1),即要求(2)只需检查,即解得结合(1),(2),要保证系统稳定,要求习题五题型:填空题题目:胡尔维兹判据不仅可以判断系统是否稳定,还可以根据稳定性条件,确定 。分析与提示:胡尔维兹判据不仅可以判断系统是否稳定,还可以根据稳定性条件,确定系统
5、参数的允许范围。答案:系统参数的允许范围习题一 题型:综合题题目:设系统特征方程为 s4 + 2s3 + 3s2 + 4s + 5 = 0试用劳斯稳定判据判别该系统的稳定性。分析与提示:根据劳斯(Routh)判据,计算劳斯阵列。答案:该系统劳斯表为 1 3 5 2 4 0 5 0 5由于劳斯表的第一列系数有两次变号,故该系统不稳定。习题二题型:综合题题目:设单位反馈控制系统的开环传递函数为试确定K值的闭环稳定范围。分析与提示:首先得到系统闭环传递函数,从而得到闭环特征方程,根据劳斯(Routh)判据,计算劳斯阵列。答案:其单位反馈系统的闭环传递函数为特征方程式为劳斯阵列为由稳定条件得因此K的稳
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械控制工程基础第五章 练习习题及 解答 机械 控制工程 基础 第五 练习 习题
限制150内