八年级数学上册第二章.doc
《八年级数学上册第二章.doc》由会员分享,可在线阅读,更多相关《八年级数学上册第二章.doc(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date八年级数学上册第二章八年级数学上册第二章第二章:实数知识梳理1.平方根如果一个数x的平方等于a,那么,这个数x就叫做a的平方根;即:当时,我们称x是a的平方根,记做:。因此:(1)当a=0时,它的平方根只有一个,也就是0本身;(2)当a0时,也就是a为正数时,它有两个平方根,且它们是互为相反数,通常记做:。(3)当a0时,也即a为负数时,它不存在平方根。例1.(1)
2、的平方是64,所以64的平方根是 ;(2) 的平方根是它本身。(3)若的平方根是2,则x= ;的平方根是 (4)当x 时,有意义。(5)一个正数的平方根分别是m和m-4,则m的值是多少?这个正数是多少?2.算术平方根 (1)如果一个正数x的平方等于a,即,那么,这个正数x就叫做a的算术平方根,记为:“”,读作,“根号a”,其中,a称为被开方数。特别规定:0的算术平方根仍然为0。(2) 算术平方根的性质:具有双重非负性,即:。(3)算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。因此,算术平方根只有一个值,并且是非负数,它只表示为:;而平方根具有两个互为
3、相反数的值,表示为:。例1.(1)下列说法正确的是 ( )A.1的算数平方根是 B.;C.的平方根是 D.0没有平方根 (2)下列各式正确的是( )A. B. C. D.(3)的算术平方根是 。(4)若有意义,则_。(5)已知ABC的三边分别是且满足,求c的取值范围。(6)(提高题)如果x、y分别是4的整数部分和小数部分。求x y的值.3.立方根 (1)如果x的立方等于a,那么,就称x是a的立方根,或者三次方根。记做:,读作,3次根号a。注意:这里的3表示的是开根的次数。一般的,平方根可以省写根的次数,但是,当根的次数在两次以上的时候,则不能省略。(2)平方根与立方根:每个数都有立方根,并且一
4、个数只有一个立方根;但是,并不是每个数都有平方根,只有非负数才能有平方根。例3.(1)64的立方根是(2)若,则b等于( ) A. 1000000 B. 1000 C. 10 D. 10000(3)下列说法中:都是27的立方根,的立方根是2,。其中正确的有 ( )A、1个 B、2个 C、3个 D、4个(4)已知:A=是的算术平方根,B=是的立方根。求AB的平方根。4.无理数(1)无限不循环小数叫做无理数;它必须满足“无限”以及“不循环”这两个条件。在初中阶段,无理数的表现形式主要包含下列几种:特殊意义的数,如:圆周率以及含有的一些数,如:2-,3等;开方开不尽的数,如:等;特殊结构的数:如:2
5、.010 010 001 000 01(两个1之间依次多1个0)等。应当要注意的是:带根号的数不一定是无理数,如:等;无理数也不一定带根号,如:(2)有理数与无理数的区别:有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。例4.(1)下列各数:3.141、0.33333、0.3030003000003(相邻两个3之间0的个数逐次增加2)、其中是有理数的有;是无理数的有。(填序号)(2)有五个数:0.125125,0.1010010001,-,其中无理数有 ( )个A 2 B 3 C 4 D
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 上册 第二
限制150内