《中考数学压轴题、几何证明题.doc》由会员分享,可在线阅读,更多相关《中考数学压轴题、几何证明题.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档 仅供参考 学习与交流中考数学压轴题、几何证明题【精品文档】第 14 页中考数学例题讲解【例】如图10,平行四边形ABCD中,AB5,BC10,BC边上的高AM=4,E为BC边上的一个动点(不与B、C重合)过E作直线AB的垂线,垂足为FFE与DC的延长线相交于点G,连结DE,DF。(1)求证:BEFCEG(2)当点E在线段BC上运动时,BEF和CEG的周长之间有什么关系?并说明你的理由(3)设BEx,DEF的面积为y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少?图10解析过程及每步分值(1) 因为四边形ABCD是平行四边形, 所以 1分 所以所以 3分
2、(2)的周长之和为定值4分理由一:过点C作FG的平行线交直线AB于H ,因为GFAB,所以四边形FHCG为矩形所以 FHCG,FGCH因此,的周长之和等于BCCHBH 由 BC10,AB5,AM4,可得CH8,BH6,所以BCCHBH24 6分理由二:由AB5,AM4,可知 在RtBEF与RtGCE中,有:所以,BEF的周长是, ECG的周长是又BECE10,因此的周长之和是246分(3)设BEx,则所以 8分配方得: 所以,当时,y有最大值9分最大值为10分【例】如图二次函数yax2bxc(a0)与坐标轴交于点A、B、C且OA1OBOC3(1)求此二次函数的解析式(2)写出顶点坐标和对称轴方
3、程(3)点M、N在yax2bxc的图像上(点N在点M的右边),且MNx轴,求以MN为直径且与x轴相切的圆的半径解析过程及每步分值(1)依题意分别代入1分解方程组得所求解析式为4分(2)5分顶点坐标,对称轴7分(3)设圆半径为,当在轴下方时,点坐标为8分把点代入得9分同理可得另一种情形圆的半径为或10分【例3】已知两个关于的二次函数与当时,;且二次函数的图象的对称轴是直线(1)求的值;(2)求函数的表达式;(3)在同一直角坐标系内,问函数的图象与的图象是否有交点?请说明理由解析过程及每步分值(1)由得 又因为当时,即, 解得,或(舍去),故的值为 (2)由,得, 所以函数的图象的对称轴为, 于是
4、,有,解得, 所以 (3)由,得函数的图象为抛物线,其开口向下,顶点坐标为;由,得函数的图象为抛物线,其开口向上,顶点坐标为; 故在同一直角坐标系内,函数的图象与的图象没有交点【例4】如图,抛物线与x轴分别相交于点B、O,它的顶点为A,连接AB,把AB所的直线沿y轴向上平移,使它经过原点O,得到直线l,设P是直线l上一动点.(1)求点A的坐标;(2)以点A、B、O、P为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P的坐标;(3)设以点A、B、O、P为顶点的四边形的面积为S,点P的横坐标为x,当时,求x的取值范围. 解析过程及每步分值解:(1)A(-2,-4)(
5、2)四边形ABP1O为菱形时,P1(-2,4)四边形ABOP2为等腰梯形时,P1()四边形ABP3O为直角梯形时,P1()四边形ABOP4为直角梯形时,P1()(3)由已知条件可求得AB所在直线的函数关系式是y=-2x-8,所以直线的函数关系式是y=-2x当点P在第二象限时,x0,过点A、P分别作x轴的垂线,垂足为A、P则四边形POAA的面积AAB的面积 即 x的取值范围是【例5】随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高。某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图所示;种植花卉的利润与投资量成二次函数关系,如图所示(注:
6、利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?解析过程及每步分值解:(1)设=,由图所示,函数=的图像过(1,2),所以2=,故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设=,由图12-所示,函数=的图像过(2,2),所以,故利润关于投资量的函数关系式是;(2)设这位专业户投入种植花卉万元(),则投入种植树木()万元,他获得的利润是万元,根据题意,得当时,的最小值是14;因为,所以所以所以所以,即,此时当时,的最大值是32.【例6】如图,已知 ,现以A点
7、为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C(1)求C点坐标及直线BC的解析式;(2)一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象;(3)现将直线BC绕B点旋转与抛物线相交与另一点P,请找出抛物线上所有满足到直线AB距离为的点P解析过程及每步分值解:(1)过C点向x轴作垂线,垂足为D,由位似图形性质可知:ABOACD, 由已知,可知: C点坐标为 直线BC的解析是为: 化简得: (2)设抛物线解析式为,由题意得: , 解得: 解得抛物线解析式为或又的顶点在x轴负半轴上,不合题意,故舍去满足条件的抛物线解析式为(准确画出函数图象)(3) 将直
8、线BC绕B点旋转与抛物线相交与另一点P,设P到 直线AB的距离为h,故P点应在与直线AB平行,且相距的上下两条平行直线和上由平行线的性质可得:两条平行直线与y轴的交点到直线BC的距离也为如图,设与y轴交于E点,过E作EFBC于F点,在RtBEF中,可以求得直线与y轴交点坐标为同理可求得直线与y轴交点坐标为两直线解析式;根据题意列出方程组: ;解得:;满足条件的点P有四个,它们分别是,.【例7】如图,抛物线交轴于A、B两点,交轴于M点.抛物线向右平移2个单位后得到抛物线,交轴于C、D两点.(1)求抛物线对应的函数表达式;(2)抛物线或在轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是
9、平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;(3)若点P是抛物线上的一个动点(P不与点A、B重合),那么点P关于原点的对称点Q是否在抛物线上,请说明理由.解析过程及每步分值【例8】如图,在矩形中,点是边上的动点(点不与点,点重合),过点作直线,交边于点,再把沿着动直线对折,点的对应点是点,设的长度为,与矩形重叠部分的面积为(1)求的度数;(2)当取何值时,点落在矩形的边上?(3)求与之间的函数关系式;当取何值时,重叠部分的面积等于矩形面积的?DQCBPRABADC(备用图1)BADC(备用图2)解析过程及每步分值解:(1)如图,四边形是矩形,又,DQCBPRA(图1)(2)如图1,由轴对称的性质可知,由(1)知,在中,根据题意得:,解这个方程得:(3)当点在矩形的内部或边上时,当时,当在矩形的外部时(如图2),DQCBPRA(图2)FE在中,又,在中,当时,综上所述,与之间的函数解析式是:矩形面积,当时,函数随自变量的增大而增大,所以的最大值是,而矩形面积的的值,而,所以,当时,的值不可能是矩形面积的;当时,根据题意,得:,解这个方程,得,因为,所以不合题意,舍去所以综上所述,当时,与矩形重叠部分的面积等于矩形面积的
限制150内