排列组合7个解题技巧.doc
《排列组合7个解题技巧.doc》由会员分享,可在线阅读,更多相关《排列组合7个解题技巧.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date排列组合7个解题技巧排列组合7个解题技巧排列组合7个解题技巧一、排列和组合的概念排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。二、七大解题策略1.特殊优先法特殊元素,优先处理;特殊位置,优先考虑。对于
2、有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( )(A) 280种 (B)240种 (C)180种 (D)96种正确答案:【B】解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=10种不同的选法,所以不同的选派方案共有 C(4,1)A(5,3)=240
3、种,所以选B。2.科学分类法问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。同时明确分类后的各种情况符合加法原理,要做相加运算。例:某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有()种。A.84 B.98 C.112 D.140正确答案【D】解析:按要求:甲、乙不能同时参加分成以下几类:a.甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8,5)=56种;b.乙参加,甲不参加,同(a)有56种;c.甲、
4、乙都不参加,那么从剩下的8位教师中选出6位,有C(8,6)=28种。故共有56+56+28=140种。3.间接法即部分符合条件排除法,采用正难则反,等价转换的策略。为求完成某件事的方法种数,如果我们分步考虑时,会出现某一步的方法种数不确定或计数有重复,就要考虑用分类法,分类法是解决复杂问题的有效手段,而当正面分类情况种数较多时,则就考虑用间接法计数.例:从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?A.240 B.310 C.720 D.1080正确答案【B】解析:此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 排列组合 解题 技巧
限制150内