新课标高考数学二轮复习:专题九《分类讨论的思想》.doc
《新课标高考数学二轮复习:专题九《分类讨论的思想》.doc》由会员分享,可在线阅读,更多相关《新课标高考数学二轮复习:专题九《分类讨论的思想》.doc(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date新课标2010高考数学二轮复习:专题九分类讨论的思想高考资源网【专题九】分类讨论的思想【考情分析】高考中的分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明
2、确分类的标准,分层别类不重复、不遗漏的分析讨论.”【知识交汇】分类讨论思想是解决问题的一种逻辑方法,也是一种数学思想,这种思想在简化研究对象,发展思维方面起着重要作用,因此,有关分类讨论的思想的数学命题在高考试题中占有重要地位。所谓分类讨论,就是在研究和解决数学问题时,当问题所给对象不能进行统一研究,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”1. 分类讨论的思想方法是中学数学的基本方法之一,是历年高考的重点分类讨论的思想具有明显的逻辑特点;分类讨论问题一般涵盖知识
3、点较多,有利于对学生知识面的考察;解决分类讨论问题,需要学生具有一定的分析能力和分类技巧;分类讨论的思想与生产实践和高等数学都紧密相关。2. 分类讨论的思想的本质分类讨论思想的本质上是“化整为零,积零为整”,从而增加了题设条件的解题策略3. 运用分类讨论的思想解题的基本步骤确定讨论对象和确定研究的全域;对所讨论的问题进行合理的分类(分类时需要做到不重复、不遗漏、标准统一、分层不越级);逐类讨论:即对各类问题详细讨论,逐步解决;归纳总结,整合得出结论4. 明确分类讨论的思想的原因,有利于掌握分类讨论的思想方法解决问题,其主要原因有:由数学概念引起的分类讨论:如绝对值定义、等比数列的前项和公式等等
4、;由数学运算要求引起的分类讨论:如偶次方根非负、对数中的底数和真数的要求、不等式两边同乘一实数对不等号方向的影响等等;由函数的性质、定理、公式的限制引起的分类讨论;由几何图形中点、线、面的相对位置不确定引起的分类讨论;由参数的变化引起的分类讨论:某些含参数的问题,由于参数的取值不同会导致所得结果不同,或由于不同的参数值要运用不同的求解或证明方法;其他根据实际问题具体分析进行分类讨论,如排列、组合问题,实际应用题等。【思想方法】一、问题中的变量或含有需讨论的参数的,要进行分类讨论【例1】设,函数.(1) 当时,求曲线在处的切线方程;(2) 当时,求函数的最小值.【解析】(1)当时, 令 得 所以
5、切点为(1,2),切线的斜率为1, 所以曲线在处的切线方程为:。 (2)当时, ,恒成立。 在上增函数。故当时, 当时,()(i)当即时,在时为正数,所以在区间上为增函数。故当时,且此时(ii)当,即时,在时为负数,在间 时为正数。所以在区间上为减函数,在上为增函数故当时,且此时(iii)当;即 时,在时为负数,所以在区间1,e上为减函数,故当时,。综上所述,当时,在时和时的最小值都是。所以此时的最小值为;当时,在时的最小值为,而,所以此时的最小值为。当时,在时最小值为,在时的最小值为,而,所以此时的最小值为所以函数的最小值为【点评】本题涉及的知识点有带绝对值的式子,因此要了解绝对值概念的定义
6、,进行分类讨论。二、根据数学中的定理,公式和性质确定分类标准【例2】求和=【解析】:当时,; 当时,此题为等比数列求和, 若时,则由求和公式,。 若时, 。综合可得【点评】:由于等比数列定义本身有条件限制,等比数列求和公式是分类给出的。因此,应用等比数列求和公式时也需要讨论,这里进行了两层分类:第一层分类的依据是等比数列的概念,分为和;第二层分类依据是等比数列求和公式的应用条件。三、涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论【例3】若四面体各棱长是1或2,且该四面体不是正四面体,则其体积的值是 .(只须写出一个可能的值)【解析】首先得考虑每个面的三条棱是如何构成的.排除1,1,2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分类讨论的思想 新课 标高 数学 二轮 复习 专题 分类 讨论 思想
限制150内