高三数学一轮复习必备精品13:直线与圆的方程备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载.doc
《高三数学一轮复习必备精品13:直线与圆的方程备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载.doc》由会员分享,可在线阅读,更多相关《高三数学一轮复习必备精品13:直线与圆的方程备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载.doc(44页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高三数学一轮复习必备精品13:直线与圆的方程 备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载21世纪教育网普通区模板.doc第13讲 直线、圆的方程备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】一【课标要求】1直线与方程(1)在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;(2)理解直线的倾斜角和斜率的概念,经历用代数方法刻
2、画直线斜率的过程,掌握过两点的直线斜率的计算公式;(3)根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;2圆与方程回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。二【命题走向】直线方程考察的重点是直线方程的特征值(主要是直线的斜率、截距)有关问题,可与三角知识联系;圆的方程,从轨迹角度讲,可以成为解答题,尤其是参数问题,在对参数的讨论中确定圆的方程。预测2010年对本讲的考察是:(1)2道选择或填空,解答题多与其他知识联合考察,本讲对于数形结合思想的考察也会是一个出题方向;(2)热点问题是直线的倾斜角和
3、斜率、直线的几种方程形式和求圆的方程三【要点精讲】1倾斜角:一条直线L向上的方向与X轴的正方向所成的最小正角,叫做直线的倾斜角,范围为。2斜率:当直线的倾斜角不是900时,则称其正切值为该直线的斜率,即k=tan;当直线的倾斜角等于900时,直线的斜率不存在过两点p1(x1,y1),p2(x2,y2)(x1x2)的直线的斜率公式:k=tan(若x1x2,则直线p1p2的斜率不存在,此时直线的倾斜角为900)。4直线方程的五种形式确定直线方程需要有两个互相独立的条件。确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。名称方程说明适用条件斜截式y=kx+bk斜率b纵截距倾斜角为90的
4、直线不能用此式点斜式y-y0=k(x-x0)(x0,y0)直线上已知点,k斜率倾斜角为90的直线不能用此式两点式=(x1,y1),(x2,y2)是直线上两个已知点与两坐标轴平行的直线不能用此式截距式+=1a直线的横截距b直线的纵截距过(0,0)及与两坐标轴平行的直线不能用此式一般式Ax+By+C=0,分别为斜率、横截距和纵截距A、B不能同时为零直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。5圆的方程圆心为,半径为r的圆的标准方程为:。特殊地,当时,圆心在原点的圆的方程为:。圆的一般方程
5、,圆心为点,半径,其中。二元二次方程,表示圆的方程的充要条件是:、项项的系数相同且不为0,即;、没有xy项,即B=0;、。四【典例解析】图题型1:直线的倾斜角例1(2008四川理,4)直线绕原点逆时针旋转,再向右平移个单位,所得到的直线为( A )()()()()【解】:直线绕原点逆时针旋转的直线为,从而淘汰(),(D) 又将向右平移个单位得,即 故选A;【点评】:此题重点考察互相垂直的直线关系,以及直线平移问题;【突破】:熟悉互相垂直的直线斜率互为负倒数,过原点的直线无常数项;重视平移方法:“左加右减”;点评:本题重点考查直线的倾斜角、斜率的关系,考查数形结合的能力例2(上海文,18)过圆的
6、圆心,作直线分别交x、y正半轴于点A、B,被圆分成四部分(如图),若这四部分图形面积满足则直线AB有( )(A) 0条 (B) 1条 (C) 2条 (D) 3条【解析】由已知,得:,第II,IV部分的面积是定值,所以,为定值,即为定值,当直线AB绕着圆心C移动时,只可能有一个位置符合题意,即直线AB只有一条,故选B。【答案】B题型2:斜率公式及应用例3全国文16)若直线被两平行线所截得的线段的长为,则的倾斜角可以是 其中正确答案的序号是 .(写出所有正确答案的序号)【解析】解:两平行线间的距离为,由图知直线与的夹角为,的倾斜角为,所以直线的倾斜角等于或。【答案】(2)已知过原点O的一条直线与函
7、数y=log8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数ylog2x的图象交于C、D两点。(1)证明点C、D和原点O在同一条直线上。(2)当BC平行于x轴时,求点A的坐标解析:(1)如图,实数x,y满足的区域为图中阴影部分(包括边界),而表示点(x,y)与原点连线的斜率,则直线AO的斜率最大,其中A点坐标为,此时,所以的最大值是。 点评:本题还可以设,则,斜率k的最大值即为的最大值,但求解颇费周折。(2)证明:设A、B的横坐标分别为x1,x2,由题设知x11,x21,点A(x1,log8x1),B(x2,log8x2).因为A、B在过点O的直线上,所以,又点C、D的坐标分别为(
8、x1,log2x1),(x2,log2x2)由于log2x13log8x1,log2x23log8x2,所以OC的斜率和OD的斜率分别为。由此得kOCkOD,即O、C、D在同一条直线上。由BC平行于x轴,有log2x1log8x2,解得 x2x13将其代入,得x13log8x13x1log8x1.由于x11,知log8x10,故x133x1,x1,于是点A的坐标为(,log8).点评:本小题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查运算能力和分析问题的能力点评:也可用三角函数公式变换求最值或用求导的方法求最值等。但将问题转化为直线与椭圆的位置关系使问题解决的十分准确
9、与清晰。题型3:直线方程例4已知直线的点斜式方程为,求该直线另外三种特殊形式的方程。 解析:(1)将移项、展开括号后合并,即得斜截式方程。 (2)因为点(2,1)、(0,)均满足方程,故它们为直线上的两点。 由两点式方程得: 即 (3)由知:直线在y轴上的截距 又令,得 故直线的截距式方程点评:直线方程的四种特殊形式之间存在着内在的联系,它是直线在不同条件下的不同表现形式,要掌握好它们之间的互化。在解具体问题时,要根据问题的条件、结论,灵活恰当地选用公式,使问题解得简捷、明了。例5直线经过点P(-5,-4),且与两坐标轴围成的三角形面积为5,求直线的方程。 解析:设所求直线的方程为, 直线过点
10、P(-5,-4),即。 又由已知有,即, 解方程组,得:或 故所求直线的方程为:,或。 即,或 点评:要求的方程,须先求截距a、b的值,而求截距的方法也有三种: (1)从点的坐标或中直接观察出来; (2)由斜截式或截距式方程确定截距;(3)在其他形式的直线方程中,令得轴上的截距b;令得出x轴上的截距a。总之,在求直线方程时,设计合理的运算途径比训练提高运算能力更为重要。解题时善于观察,勤于思考,常常能起到事半功倍的效果。题型3:直线方程综合问题例5(重庆理,1)直线与圆的位置关系为( )A相切 B相交但直线不过圆心 C直线过圆心D相离【解析】圆心为到直线,即的距离,而,选B。【答案】B【点评】
11、:此题重点考察圆的标准方程和点到直线的距离;【突破】:数形结合,使用点到直线的距离距离公式例6(天津文,14)若圆与圆的公共弦长为,则a=_.【解析】由已知,两个圆的方程作差可以得到相交弦的直线方程为 ,利用圆心(0,0)到直线的距离d为,解得a=1.【答案】1(2)已知动圆过定点P(1,0),且与定直线l:x=1相切,点C在l上。()求动圆圆心的轨迹M的方程;()设过点P,且斜率为的直线与曲线M相交于A、B两点。(i)问:ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;(ii)当ABC为钝角三角形时,求这种点C的纵坐标的取值范围。()解法一,依题意,曲线M是以点P为焦点,直线l为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高三数学一轮复习必备精品13:直线与圆的方程 备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载 数学 一轮 复习 必备 精品 13 直线 方程 备注 42 全部 免费 欢迎 下载
链接地址:https://www.taowenge.com/p-23944774.html
限制150内