高中数学学业水平考试知识点.doc
《高中数学学业水平考试知识点.doc》由会员分享,可在线阅读,更多相关《高中数学学业水平考试知识点.doc(65页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高中数学学业水平考试知识点如果你愿意付出,总会得到回报高中数学学业水平测试知识点(整理人:李辉)【必修一】一、 集合与函数概念 并集:由集合A和集合B的元素合并在一起组成的集合,如果遇到重复的只取一次。记作:AB交集:由集合A和集合B的公共元素所组成的集合,如果遇到重复的只取一次记作:AB补集:就是作差。1、集合的子集个数共有个;真子集有1个;非空子集有1个;非空的真
2、子有2个. 2、指数函数与对数函数互为反函数()它们的图象关于y=x对称。3、(1)函数定义域:分母不为0;开偶次方被开方数;指数的真数属于R、对数的真数.4、函数的单调性:如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1) 0 , a 1 , M 0 , N 0,那么:; ; 。指数与对数互化式:;对数恒等式:.(5)对数函数的图象和性质图象性质(1)定义域:(0,+)(2)值域:R(3)过定点(1,0),即x=1时,y=0(4)在 (0,+)上是增函数(4)在(0,+)上是减函数(5);(5);8、幂函数:函数叫做幂函数(只考虑的图象)。9、方程的根与
3、函数的零点:如果函数在区间 a , b 上的图象是连续不断的一条曲线,并且有,那么,函数在区间 (a , b) 内有零点,即存在,使得这个c就是方程的根。【必修二】一、直线 平面 简单的几何体1、长方体的对角线长;正方体的对角线长2、球的体积公式: ; 球的表面积公式: 3、圆柱侧面积; 圆锥侧面积:圆台侧面积:柱体、锥体、台体的体积公式:=h (为底面积,为柱体高); = (为底面积,为柱体高)=(+) (, 分别为上、下底面积,为台体高)4、点、线、面的位置关系及相关公理及定理:(1)四公理三推论:公理1:若一条直线上有两个点在一个平面内,则该直线上所有的点都在这个平面内。公理2:经过不在
4、同一直线上的三点,有且只有一个平面。公理3:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。推论一:经过一条直线和这条直线外的一点,有且只有一个平面。推论二:经过两条相交直线,有且只有一个平面。推论三:经过两条平行直线,有且只有一个平面。公理4:平行于同一条直线的两条直线平行.(2)空间线线,线面,面面的位置关系:空间两条直线的位置关系:相交直线有且仅有一个公共点;平行直线在同一平面内,没有公共点; 异面直线不同在任何一个平面内,没有公共点。相交直线和平行直线也称为共面直线。空间直线和平面的位置关系:(1)直线在平面内(无数个公共点);(2)直
5、线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)它们的图形分别可表示为如下,符号分别可表示为,。空间平面和平面的位置关系:(1)两个平面平行没有公共点;(2)两个平面相交有一条公共直线。5、直线与平面平行的判定定理:如果平面外一条直线与平面内一条直线平行,那么该直线与这个平面平行。符号表示:。图形表示:6、两个平面平行的判定定理:如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行。符号表示:。图形表示:7、. 直线与平面平行的性质定理:如果一条直线与一个平面平行,经过这条直线的平面与已知平面相交,那么交线与这条直线平行。符号表示:。 图形表示:8、两个平面平
6、行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们交线的平行。符号表示: 9、直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。符号表示:10、.两个平面垂直的判定定理:一个平面经过另一个平面的垂线,则这两个平面垂直。 符号表示:11、直线与平面垂直的性质:如果两条直线同垂直于一个平面,那么这两条直线平行。符号表示:。12、平面与平面垂直的性质:如果两个平面互相垂直,那么在其中一个平面内垂直于交线的直线垂直于另一个平面。符号表示:13、异面直线所成角:平移到一起求平移后的夹角。直线与平面所成角:直线和它在平面内的射影所成的角。(如右图
7、)14、异面直线所成角的取值范围是;直线与平面所成角的取值范围是;二面角的取值范围是;两个向量所成角的取值范围是二、直线和圆的方程1、斜率:,;直线上两点,则斜率为2、直线的五种方程 :(1)点斜式 (直线过点,且斜率为)(2)斜截式 (b为直线在y轴上的截距).(3)两点式( (、; ()、().(4)截距式 (分别为直线的横、纵截距,)(5)一般式 (其中A、B不同时为0).3、两条直线的平行、重合和垂直: (1)若,;.(2)若,且A1、A2、B1、B2都不为零,;4、两点P1(x1,y1)、P2(x2,y2)的距离公式 P1P2=5、两点P1(x1,y1)、P2(x2,y2)的中点坐标
8、公式 M(,)6、点P(x0,y0)到直线(直线方程必须化为一般式)Ax+By+C=0的距离公式d=7、平行直线Ax+By+C1=0、Ax+By+C2=0的距离公式d=8、圆的方程:标准方程,圆心,半径为;一般方程,(配方:) 时,表示一个以为圆心,半径为的圆;9、点与圆的位置关系:点与圆的位置关系有三种:若,则点在圆外;点在圆上;点在圆内.10、直线与圆的位置关系:直线与圆的位置关系有三种:;.其中.11、弦长公式:若直线y=kx+b与二次曲线(圆、椭圆、双曲线、抛物线)相交于A(x1,y1),B(x2,y2)两点,则由ax2+bx+c=0(a0)二次曲线方程y=kx+m 则知直线与二次曲线
9、相交所截得弦长为:= = = = =13、 空间直角坐标系,两点之间的距离公式: xoy平面上的点的坐标的特征A(x,y,0):竖坐标z=0 xoz平面上的点的坐标的特征B(x,0,z):纵坐标y=0 yoz平面上的点的坐标的特征C(0,y,z):横坐标x=0 x轴上的点的坐标的特征D(x,0,0):纵、竖坐标y=z=0 y轴上的点的坐标的特征E(0,y,0):横、竖坐标x=z=0 z轴上的点的坐标的特征E(0,0,z):横、纵坐标x=y=0 P1P2=【必修三】统计:三三种常用抽样方法:1、简单随机抽样;2系统抽样;3分层抽样。4统计图表:包括条形图,折线图,饼图,茎叶图。四、频率分布直方图
10、:具体做法如下:(1)求极差(即一组数据中最大值与最小值的差);(2)决定组距与组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图。注:小矩形的高度=频率/组距。2、频率分布直方图: (注意:不是小矩形的高度)计算公式: 各组频数之和=样本容量, 各组频率之和=13、茎叶图:茎表示高位,叶表示低位。折线图:连接频率分布直方图中小长方形上端中点,就得到频率分布折线图。4、刻画一组数据集中趋势的统计量:平均数,中位数,众数。在一组数据中出现次数最多的数据叫做这组数据的众数;将一组数据按照从大到小(或从小到大)排列,处在中间位置上的一个数据(或中间两位数据的平均数)叫做这组数据的中位
11、数;5、刻画一组数据离散程度的统计量:极差 ,极准差,方差。(1)极差一定程度上表明数据的分散程度,对极端数据非常敏感。(2)方差,标准差越大,离散程度越大。方差,标准差越小,离散程度越小,聚集于平均数的程度越高。(3)计算公式:标准差:方差: 直线回归方程的斜率为,截距为,即回归方程为=x+(此直线必过点(,)。6、频率分布直方图:在频率分布直方图中,各小长方形的面积等于相应各组的频率,方长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1。五、随机事件:在一定的条件下所出现的某种结果叫做事件。一般用大写字母A,B,C表示.随机事件的概率:在大量重复进行同一试验时,事件A发生的频
12、率 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)。由定义可知0P(A)1,显然必然事件的概率是1,不可能事件的概率是0。1、事件间的关系:(1)互斥事件:不能同时发生的两个事件叫做互斥事件;(2)对立事件:不能同时发生,但必有一个发生的两个事件叫做互斥事件;(3)包含:事件A发生时事件B一定发生,称事件A包含于事件B(或事件B包含事件A);(4)对立一定互斥,互斥不一定对立。2、概率的加法公式:(1)当A和B互斥时,事件A+B的概率满足加法公式:P(A+B)=P(A)+P(B)(A、B互斥)(2)若事件A与B为对立事件,则AB为必然事件,所以P(AB)= P(
13、A)+ P(B)=1,于是有P(A)=1P(B)3、古典概型:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式: 4、几何概型:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型。(2)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等(3)几何概型的概率公式: 【必修四】一、 三角函数1、弧度制:(1)、弧度,1弧度;弧长公式: (为所对的弧长,为半径,正负号的确定:逆时针为正,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 学业 水平 考试 知识点
限制150内