高中数学教案_-精华.doc
《高中数学教案_-精华.doc》由会员分享,可在线阅读,更多相关《高中数学教案_-精华.doc(151页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高中数学教案_-精华高中数学教案_-精华函数y=Asin(x+)的图象(自用)教材:人民教育出版社全日制普通高级中学教科书(必修)数学数学第一册(下) 第四章第9节一、 教材分析1.教学内容本节主要是通过图像变换和五点法作出函数y=A sin(x+)(A0, 0)的图象,介绍函数y=A sin(x+)(A.0, 0)的性质,及它与y=sinx的图象的关系。2.本节教材
2、的地位与作用由正弦曲线变换得到y=A sin(x+)(A.0, 0)图象的思维过程充分体现了由简单到复杂、特殊到一般的化归的数学思想,训练了学生运用数形结合的思想解决问题的能力。函数y=Asin(x+)(A.0, 0)是学生继学习了正弦函数、余弦函数之后要学习的又一重要的三角函数,它与高中物理课程中的“机械波”的内容与之紧密相关,因此能为实际问题的解决提供良好的理论依据。同时,本节教材也是培养学生观察、分析、类比、归纳和探究的数学能力的重要素材。3.教学重点、难点重点:通过图象变换和五点法作出函数y=Asin(x+)(A0,0)的图象,掌握参数A、对其形状和位置的影响,分析其与函数y=sinx
3、的图象的关系。难点:理解并掌握函数y=A sin(x+)(A.0, 0)的图象变换规则。参数A、变换的顺序不同时,变换的规则不同,容易发生混淆。教学过程中让学生自主探索,加强对变换顺序的理解,正是为了攻克难点。4、课时安排本节内容将安排1课时时间完成教学。二、教学目标知识目标:通过图象变换和五点法作出函数y=Asin(x+)(A0,0)的图象;函数y=A sin(x+)(A.0, 0)的性质;理解并掌握函数y=A sin(x+)(A.0, 0)的图象变换规则。能力目标:让学生观察并分析函数y=Asin(x+) ,(A.0, 0)的图象,分析A、的变化对函数图象的形状和位置的影响,总结出图象的基
4、本变换规则。培养学生化归和数形结合的思想,训练学生自主地获取知识的能力,以及在所学知识的基础上进行再创新的能力。情感目标:激发学生的好奇心,刺激学生的探究心理,培养学生的学习积极性,提高对数学的兴趣。理论联系实际,使学生受到唯物主义观点的教育。三、教法与学法分析1.教法分析本节课设计的指导思想是:现代认知心理学建构主义学习理论。采用探究式教学方法,创设情景,通过多媒体课件的直观演示,启发引导学生发现问题、联想类比,同时让学生动手画图来验证猜想。通过点化问题,引导学生观察、分析图象的变化,自主地总结出变化规律,有利于突破教学难点,提高学生的分析归纳能力。2.学法指导本节课注重调动学生积极思考、主
5、动探索,尽可能地增加学生参与教学活动的时间和空间,学生在探究的过程中被激发起好奇心和创新意识,通过观察分析、联想类比、总结归纳的方法掌握教学目标。四、教学过程本节内容的教学过程如下:1.创设情景2.对比探索3.探究规律4.归纳小结5.应用新知6.课堂小结7.布置作业。教学环节教学程序设计意图1.创设情景,引发兴趣在物理中,弹簧振子位移y与时间x的关系、交流电的电流y与时间x的关系等都是形如y=Asin(x+)(其中A、都是常数)的函数。(演示课件)设问:这个图象与y=sin x的图象有什么关系?若将函数y=sin x的图象变换得到y=Asin(x+)的图象,应采用怎样的方法和步骤? 从学生已熟
6、悉的弹簧振子的“位移时间”图象来引发设问,使新课引入显得自然、易于接受。让学生明确理论是从实践中来,又回到实践中去。使学生学习研究目的性更加明确。2.对比探索,分析归纳例1、利用五点法在同一坐标系中作出y=2sinx与y=sinx的简图,并指出它们的图象与y=sinx的关系。(引导学生得出规律)例2、利用五点法在同一坐标系中作出=sin2x与y=sinx的简图,并指出它们的图象与y=sinx的关系。(引导学生得出规律)例3、利用五点法在同一坐标系中作出y=sin(x+)与y=sin(x-)的简图并指出它们的图象与y=sinx的关系。(引导学生得出规律)以这3个例子来学习三种基本变换,引导学生观
7、察变换过程中的不变量,得出结论。必要时由老师给予适当的提示和启发。(让学生大胆尝试,使学生对函数图象有一个初步的感性认识。)3.探究规律,掌握新知例4、作出函数y=3sin(2x+)的简图,并指出它的图象与y=sinx的关系。(引导学生揭示规律)变换方法有两种:1)先平移变换,再周期变换,最后作振幅变换。2)先周期变换,再平移变换,最后作振幅变换。学生在碰到这个问题时,很感兴趣,因为它和例3很相似,因此可能会猜想“左移个单位长度”,这时引导学生通过“五点法” 作图验证,就会发现猜想是错误的。不过这不要紧,这样更加能激发学生的好奇心和求知欲,于是,很快掀学习的高潮,从而给学生搭建起一个实践探究的
8、平台。4.归纳小结,展示规律 总结出函数y=Asin(x+)(A0, 0)的图象与y=sinx的图象的关系。 指明y=Asin(x+),(A.0, 0)x0,+在物理学中的具体应用并指出A、x+、相应的名称。 让学生认真总结,在探索与交流中去体会不同的变化顺序对变化规则的影响。展示函数y=A sin(x+)(A.0, 0)的图象变换规则,攻克难点。引导学生对所学的知识、数学思想方法进行小结。引导学生对学习过程进行反思,为今后的学习中进行有效调控打下良好的基础。5.应用新知,当堂练习完成P67的练习当堂练习有利于巩固知识,强化学的效果。6、课堂小结以不同顺序变换A、的方法用五点法和变换关系作函数
9、y=Asin(x+)的图象巩固学习效果,强调学习重点7.布置作业,巩固提高习题4.9题2、3、4、5思考:用示意图表示:将y=2sin(3x-)的图象变换为y=sinx 的图象的过程。布置作业有弹性,避免一刀切。使学有余力的学生进一步训练逆向思维,使知识掌握更加深刻。五、板书设计:函数y=Asin(x+)的图象例1 例2例3例4反函数教材:人民教育出版社全日制普通高级中学教科书(必修)数学数学第一册(上) 第二章第4节一、教材分析1.教学内容 本节教材内容涉及反函数的概念,反函数的求法。函数从本质上讲是函数,原函数与反函数互为反函数,它们的图象关于直线y=x对称。2.本节教材地位与重要性“反函
10、数”一节课是高中数学第一册的重要内容。这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为日后反三角函数的教学做好准备,起到承上启下的重要作用。3.重点与难点 重点:反函数的概念及反函数的求法。理解反函数概念并求出函数的反函数是高一数学教学的重要内容,这建立在对函数概念的真正理解的基础上,必须使学生对于函数的基本概念有清醒的认识。 难点:反函数概念的接受与理解。学生对于反函数的来历、反函数与原函数间的关系都容易产生错误的认识,必须使学生认清反函数的实质就是函数这一本质问题,才能使学生接受概念
11、并对反函数的存在有正确的认识。教学中复习函数概念,进而引出反函数概念,就是为突破难点做准备。4. 课时安排本节内容将安排1课时时间完成教学。二、教学目标 知识目标:理解反函数的概念,并能判定一个函数是否存在反函数; 掌握反函数的求法,并能理解原函数和反函数之间的内在联系;能力目标:通过观察、分析、抽象、推理得出数学规律,培养学生的数学意识。通过作图,加强学生对数形结合的数学思想的理解,训练学生自主地获取知识的能力,和在所学知识的基础上进行再创新的能力。 情感目标:使学生树立对立统一的辩证思维的观点。三、教法与学法分析1.教法分析根据本节课的内容及学生的实际水平,将采取引导发现式教学方法并充分发
12、挥电脑多媒体的辅助教学作用。引导发现法作为一种启发式教学方法,体现了认知心理学的基本理论。教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的“发现”和接受,进而完成知识的内化,使书本的知识成为自己的知识。课堂不再成为“一言堂”,学生也不会变成教师注入知识的“容器”。 电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。另外,电脑软件具有良好的交互性,可以将教师的思路和策略以软件的形式来体现,更好地为教学服务。2.学法指导 “授人以鱼,不如授人
13、以渔”,在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发点拨,在积极的双边活动中,学生找到了解决疑难的方法。整个过程贯穿“怀疑”“思索”“发现”“解惑”四个环节,学生随时对所学知识产生有意注意思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,符合学生认知水平,培养了学习能力。四、教学过程在新课导入、新课讲授及终结阶段的教学中,力求发挥学生自我发现的能力,突出学生的教学主体地位,以启发、引导为教师的责任。教学环节教学程序设计意图1.新课导入物体做匀速
14、直线运动,位移s是时间t的函数,即s=vt(v是常量)。反过来,时间t是位移s的函数,即t=s/v。例如,由函数y=2x+6(xR)可以得到x=y/2-3,对于y在R中的任何一个值,通过x=y/2-3,x在R中都有唯一的值和它对应,即x是y的函数。引出反函数。这样的引入方式,抓住了反函数概念的实质,确保学生不会产生概念上的偏差。此外,可以使学生明白新知识来源于旧知识,促使学生主动运用函数的研究方法去学习反函数,为顺利完成教学任务做好思维上的准备。2.提炼新知在导入的基础上,给出反函数的具体概念。进一步深化对概念的理解,设置疑问:(1)反函数是不是函数;(2)反函数有没有三要素?如何确定?(多媒
15、体课件展示)引导学生思索,使学生认识到:反函数也是函数,其定义域是原函数的值域,对应法则可由原函数得到,值域则是原函数的定义域。函数y=f(x)与函数y=f-1(x)互为反函数例1 求下列函数的反函数。(1)y=3x-1 (xR);(2)y=x3+1 (xR);(3)+1 (x0);(4)y=(2x+3)/(x-1)(xR且x1).通过实例讲解反函数的求法,特别强调:注意反函数的定义域层层深入,揭示反函数的定义,逐步加深学生对反函数的认识。通过实例,讲解如何求一个函数的反函数,达到突破重点、难点的目的。3.应用拓展例2 求函数y=3x-2(xR)的反函数,并且画出原来的函数和它的反函数的图象。
16、例3 求函数y=x(xR)的反函数,并且画出原来的函数和它的反函数的图象。多媒体课件展示求解过程和图象,引导学生观察分析,揭示原函数与反函数图象间的关系:两者关于直线y=x对称。通过函数图像来研究问题,直观形象,符合学生的认知规律,加深了学生对反函数的认识。4.课堂练习完成P63的练习题1-6,并讲解。当堂练习有利于巩固知识,强化学的效果,并且有利于及时发现学生存在的问题。5.归纳小结反函数的概念;反函数与原函数的关系:两者互为反函数,两者的图象关于直线y=x对称。巩固学习效果,强调学习重点。6.布置作业习题2.4题1、2、3,题4、5、6选做。思考:已知函数y=f(x),(xA)是增函数,问
17、:反函数y=f-1(x)单调性如何?图象中如何反映?布置作业有弹性,避免一刀切。使学有余力的学生进一步训练逆向思维,使知识掌握更加深刻。五、板书设计反函数例1例2例3等比数列的前n项和一、教材分析1.教学内容等比数列的前n项和是人教版高中数学第一册上第三章第五节的内容。它的主要内容是首先通过具体例子说明如何求等比数列前n项和,然后推导出等比数列的前n项和公式,最后举例说明公式的运用。2.教学内容的地位和作用数列在整个中学数学教学内容中,处于一个知识汇合点的地位,很多知识都与数列有着密切联系,过去学过的数、式、方程、函数、简易逻辑等知识在这一章均得到了较为充分的应用,而学习数列又为后面学习数列与
18、函数的极限等内容作了铺垫,并且与前面学习的函数知识有着密切的联系。它的公式推导过程中所渗透的递推、类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习生活中必备的数学素养,且在现实生活中有着广泛的实际运用。3.教学重点难点分析重点:等比数列的前n项和公式及其应用。等比数列的前n项和公式在实际生活中有着广泛的应用,这一节的内容贯彻了理论联系实际的思想,有利于提高学生的观察、思考和实践能力。难点:等比数列的前n项和公式的推导。在推导过程中第一次运用了错位相减法,根据高一学生的认知水平,这一点理解起来有一定的难度。4.课时安排等比数列的前n项和共安排2课时,第1课时主要内容是等比数列前n
19、项和的公式的推导,并能灵活运用公式解决问题。第2课时主要内容是通过讲解典型例子深化知识,加强学生运用公式的灵活性。二、教学目标分析结合教材和新课标,制定如下的教学目标:1、知识目标:理解等比数列的前n项和公式的推导过程,掌握等比数列的前n项和公式及其运用。2、能力目标:通过推导公式,提高学生的建模意识及探究问题、分析问题与解决问题的能力,体会公式探求过程中从特殊到一般的思维方式,学习推导过程中运用到的递推方法,体会方程思想、分类讨论思想及转化思想。3、情感目标:通过实际生活例子,探索并推导出公式,激发学生的求知欲,培养学生大胆尝试、勇于探索的思维品质。另外通过本节的学习,使学生体会到数学与现实
20、生活之间的联系,感受学习数学的意义所在。三、教法学法分析 (一)教法分析以学生为主,采用启发式教学方式,教师根据具体的例子,引导学生思考,自主分析问题,然后由师生共同归纳总结,推导出公式,学生掌握公式之后再将其运用到实际的例子中去。公式的学习采用这种方式,便于学生的理解和掌握。另外,还可利用多媒体辅助教学。(二)学法分析学情分析:高一的学生具备了一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但其探究能力还有待提高。同时已经学习并掌握了等差数列的前n项和的公式以及对等比数列已有初步的认识,已具备良好的知识基础。类比和对比法:等比数列前n项和的公式与之前所学的等差数列前n项和公式都是在首
21、先建立方程的基础上进行推导而得的,将二者比较起来学习,可以进一步认识他们之间的区别和联系,以加深对等比数列的前n项和的理解。练习巩固法:通过各种例子,练习巩固对公式的掌握。学生的学习过程应该为“具体抽象具体”,从感性认知到理性思维,从具体到抽象是归纳总结的过程,从抽象到具体是运用推广过程,学生应该遵循这一规律,循序渐进的学习。四、教学程序1、知识回顾等比数列的通项公式。2、设立情景,引入课题引例:小明的爸爸每半月给小明300元的生活费,一天小明回家告诉爸爸,他以后不再一次性拿300元,改成第一天拿1分钱,第二天拿2分钱,第三天拿4分钱以后每天都拿前一天的2倍,请问如果你是小明,你会这样做吗?【
22、设计意图:“生活费”这一词是学生在生活中经常会接触到的,引入这一词能立刻激发学生的兴趣,促进学生积极学习,培养学生勇于探索的求知精神。】3、 分析推导,得出公式根据引例,得到数列1,2,4,214,这实际上是求以1为首项、2为公比的等比数列的前15项和,即: S15124214 等式两边乘以公比2得到: 2S15248215 将错位,与对应,得到方程组:S15124214 2S15 248215 解方程组得到:S15215 1,则S15=32767.说明:这一部分的推导由老师讲授给学生,在讲授过程中要注意引导学生积极思考:为什么要将等式两边同时乘以2?那为什么不同时乘以3呢?【设计意图:在教学
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 教案 精华
限制150内