高中数学竞赛讲义(免费).doc
《高中数学竞赛讲义(免费).doc》由会员分享,可在线阅读,更多相关《高中数学竞赛讲义(免费).doc(341页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高中数学竞赛讲义(免费)高中数学竞赛讲义(免费)高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年全日制普通高级中学数学教学大纲中所规定的教学要求和内容,但在方法的要求上有所提高。全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所
2、增加的内容是: 1.平面几何 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。三角形中的几个特殊点:旁心、费马点,欧拉线。几何不等式。几何极值问题。几何中的变换:对称、平移、旋转。圆的幂和根轴。面积方法,复数方法,向量方法,解析几何方法。 2.代数 周期函数,带绝对值的函数。三角公式,三角恒等式,三角方程,三角不等式,反三角函数。递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。第二数学归纳法。平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。多项式的除法定理、因式分解定理,多项式的相等,整系
3、数多项式的有理根*,多项式的插值公式*。n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。函数迭代,简单的函数方程* 3.初等数论 同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数x,费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。 4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。组合计数,组合几何。抽屉原理。容斥原理。极端原理。图论问题。集合的划分。覆盖。平面凸集、凸包及应用*。注:有*号的内容加试中暂不考,但在冬令营中可能考。三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对
4、象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素在集合A中,称属于A,记为,否则称不属于A,记作。例如,通常用N,Z,Q,B,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用来表示。集合分有限集和无限集两种。集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如1,2,3;描述法:将集合中的元素的属性写在大括号内表示集合的方法。例如有理数,分别表示有理数集和正实数集。定义2 子集:对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,则A叫做B的子集,记为,例
5、如。规定空集是任何集合的子集,如果A是B的子集,B也是A的子集,则称A与B相等。如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。定义3 交集,定义4 并集,定义5 补集,若称为A在I中的补集。定义6 差集,。定义7 集合记作开区间,集合记作闭区间,R记作定理1 集合的性质:对任意集合A,B,C,有:(1) (2);(3) (4)【证明】这里仅证(1)、(3),其余由读者自己完成。(1)若,则,且或,所以或,即;反之,则或,即且或,即且,即(3)若,则或,所以或,所以,又,所以,即,反之也有定理2 加法原理:做一件事有类办法,第一类办法中有种不同的方法,第二类办法中有种不同的方法,
6、第类办法中有种不同的方法,那么完成这件事一共有种不同的方法。定理3 乘法原理:做一件事分个步骤,第一步有种不同的方法,第二步有种不同的方法,第步有种不同的方法,那么完成这件事一共有种不同的方法。二、方法与例题1利用集合中元素的属性,检验元素是否属于集合。例1 设,求证:(1);(2);(3)若,则 证明(1)因为,且,所以(2)假设,则存在,使,由于和有相同的奇偶性,所以是奇数或4的倍数,不可能等于,假设不成立,所以(3)设,则(因为)。2利用子集的定义证明集合相等,先证,再证,则A=B。例2 设A,B是两个集合,又设集合M满足,求集合M(用A,B表示)。【解】先证,若,因为,所以,所以; 再
7、证,若,则1)若,则;2)若,则。所以综上,3分类讨论思想的应用。例3 ,若,求【解】依题设,再由解得或,因为,所以,所以,所以或2,所以或3。因为,所以,若,则,即,若,则或,解得综上所述,或;或。4计数原理的应用。例4 集合A,B,C是I=1,2,3,4,5,6,7,8,9,0的子集,(1)若,求有序集合对(A,B)的个数;(2)求I的非空真子集的个数。【解】(1)集合I可划分为三个不相交的子集;AB,BA,中的每个元素恰属于其中一个子集,10个元素共有310种可能,每一种可能确定一个满足条件的集合对,所以集合对有310个。(2)I的子集分三类:空集,非空真子集,集合I本身,确定一个子集分
8、十步,第一步,1或者属于该子集或者不属于,有两种;第二步,2也有两种,第10步,0也有两种,由乘法原理,子集共有个,非空真子集有1022个。5配对方法。例5 给定集合的个子集:,满足任何两个子集的交集非空,并且再添加I的任何一个其他子集后将不再具有该性质,求的值。【解】将I的子集作如下配对:每个子集和它的补集为一对,共得对,每一对不能同在这个子集中,因此,;其次,每一对中必有一个在这个子集中出现,否则,若有一对子集未出现,设为C1A与A,并设,则,从而可以在个子集中再添加,与已知矛盾,所以。综上,。6竞赛常用方法与例问题。定理4 容斥原理;用表示集合A的元素个数,则,需要xy此结论可以推广到个
9、集合的情况,即定义8 集合的划分:若,且,则这些子集的全集叫I的一个-划分。定理5 最小数原理:自然数集的任何非空子集必有最小数。定理6 抽屉原理:将个元素放入个抽屉,必有一个抽屉放有不少于个元素,也必有一个抽屉放有不多于个元素;将无穷多个元素放入个抽屉必有一个抽屉放有无穷多个元素。例6 求1,2,3,100中不能被2,3,5整除的数的个数。【解】 记,由容斥原理,所以不能被2,3,5整除的数有个。例7 S是集合1,2,2004的子集,S中的任意两个数的差不等于4或7,问S中最多含有多少个元素?【解】将任意连续的11个整数排成一圈如右图所示。由题目条件可知每相邻两个数至多有一个属于S,将这11
10、个数按连续两个为一组,分成6组,其中一组只有一个数,若S含有这11个数中至少6个,则必有两个数在同一组,与已知矛盾,所以S至多含有其中5个数。又因为2004=18211+2,所以S一共至多含有1825+2=912个元素,另一方面,当时,恰有,且S满足题目条件,所以最少含有912个元素。例8 求所有自然数,使得存在实数满足:【解】 当时,;当时,;当时, 。下证当时,不存在满足条件。令,则所以必存在某两个下标,使得,所以或,即,所以或,。()若,考虑,有或,即,设,则,导致矛盾,故只有考虑,有或,即,设,则,推出矛盾,设,则,又推出矛盾, 所以故当时,不存在满足条件的实数。()若,考虑,有或,即
11、,这时,推出矛盾,故。考虑,有或,即=3,于是,矛盾。因此,所以,这又矛盾,所以只有,所以。故当时,不存在满足条件的实数。例9 设A=1,2,3,4,5,6,B=7,8,9,n,在A中取三个数,B中取两个数组成五个元素的集合,求的最小值。【解】 设B中每个数在所有中最多重复出现次,则必有。若不然,数出现次(),则在出现的所有中,至少有一个A中的数出现3次,不妨设它是1,就有集合1,其中,为满足题意的集合。必各不相同,但只能是2,3,4,5,6这5个数,这不可能,所以20个中,B中的数有40个,因此至少是10个不同的,所以。当时,如下20个集合满足要求:1,2,3,7,8, 1,2,4,12,1
12、4, 1,2,5,15,16, 1,2,6,9,10,1,3,4,10,11, 1,3,5,13,14, 1,3,6,12,15, 1,4,5,7,9,1,4,6,13,16, 1,5,6,8,11, 2,3,4,13,15, 2,3,5,9,11,2,3,6,14,16, 2,4,5,8,10, 2,4,6,7,11, 2,5,6,12,13,3,4,5,12,16, 3,4,6,8,9, 3,5,6,7,10, 4,5,6,14,15。例10 集合1,2,3n可以划分成个互不相交的三元集合,其中,求满足条件的最小正整数【解】 设其中第个三元集为则1+2+所以。当为偶数时,有,所以,当为奇数
13、时,有,所以,当时,集合1,11,4,2,13,5,3,15,6,9,12,7,10,14,8满足条件,所以的最小值为5。第二章 二次函数与命题一、基础知识1二次函数:当0时,y=ax2+bx+c或f(x)=ax2+bx+c称为关于x的二次函数,其对称轴为直线x=-,另外配方可得f(x)=a(x-x0)2+f(x0),其中x0=-,下同。2二次函数的性质:当a0时,f(x)的图象开口向上,在区间(-,x0上随自变量x增大函数值减小(简称递减),在x0, -)上随自变量增大函数值增大(简称递增)。当a0时,方程f(x)=0即ax2+bx+c=0和不等式ax2+bx+c0及ax2+bx+c0时,方
14、程有两个不等实根,设x1,x2(x1x2),不等式和不等式的解集分别是x|xx2和x|x1xx2,二次函数f(x)图象与x轴有两个不同的交点,f(x)还可写成f(x)=a(x-x1)(x-x2).2)当=0时,方程有两个相等的实根x1=x2=x0=,不等式和不等式的解集分别是x|x和空集,f(x)的图象与x轴有唯一公共点。3)当0时,方程无解,不等式和不等式的解集分别是R和.f(x)图象与x轴无公共点。当a0,当x=x0时,f(x)取最小值f(x0)=,若a0),当x0m, n时,f(x)在m, n上的最小值为f(x0); 当x0n时,f(x)在m, n上的最小值为f(n)(以上结论由二次函数
15、图象即可得出)。定义1 能判断真假的语句叫命题,如“35”是命题,“萝卜好大”不是命题。不含逻辑联结词“或”、“且”、“非”的命题叫做简单命题,由简单命题与逻辑联结词构成的命题由复合命题。注1 “p或q”复合命题只有当p,q同为假命题时为假,否则为真命题;“p且q”复合命题只有当p,q同时为真命题时为真,否则为假命题;p与“非p”即“p”恰好一真一假。定义2 原命题:若p则q(p为条件,q为结论);逆命题:若q则p;否命题:若非p则q;逆否命题:若非q则非p。注2 原命题与其逆否命题同真假。一个命题的逆命题和否命题同真假。注3 反证法的理论依据是矛盾的排中律,而未必是证明原命题的逆否命题。定义
16、3 如果命题“若p则q”为真,则记为pq否则记作pq.在命题“若p则q”中,如果已知pq,则p是q的充分条件;如果qp,则称p是q的必要条件;如果pq但q不p,则称p是q的充分非必要条件;如果p不q但pq,则p称为q的必要非充分条件;若pq且qp,则p是q的充要条件。二、方法与例题1待定系数法。例1 设方程x2-x+1=0的两根是,求满足f()=,f()=,f(1)=1的二次函数f(x).【解】 设f(x)=ax2+bx+c(a0),则由已知f()=,f()=相减并整理得(-)(+)a+b+1=0,因为方程x2-x+1=0中0,所以,所以(+)a+b+1=0.又+=1,所以a+b+1=0.又因
17、为f(1)=a+b+c=1,所以c-1=1,所以c=2.又b=-(a+1),所以f(x)=ax2-(a+1)x+2.再由f()=得a2-(a+1)+2=,所以a2-a+2=+=1,所以a2-a+1=0.即a(2-+1)+1-a=0,即1-a=0,所以a=1,所以f(x)=x2-2x+2.2方程的思想。例2 已知f(x)=ax2-c满足-4f(1)-1, -1f(2)5,求f(3)的取值范围。【解】 因为-4f(1)=a-c-1,所以1-f(1)=c-a4.又-1f(2)=4a-c5, f(3)=f(2)-f(1),所以(-1)+f(3)5+4,所以-1f(3)20.3利用二次函数的性质。例3
18、已知二次函数f(x)=ax2+bx+c(a,b,cR, a0),若方程f(x)=x无实根,求证:方程f(f(x)=x也无实根。【证明】若a0,因为f(x)=x无实根,所以二次函数g(x)=f(x)-x图象与x轴无公共点且开口向上,所以对任意的xR,f(x)-x0即f(x)x,从而f(f(x)f(x)。所以f(f(x)x,所以方程f(f(x)=x无实根。注:请读者思考例3的逆命题是否正确。4利用二次函数表达式解题。例4 设二次函数f(x)=ax2+bx+c(a0),方程f(x)=x的两根x1, x2满足0x1x2,()当x(0, x1)时,求证:xf(x)x1;()设函数f(x)的图象关于x=x
19、0对称,求证:x0【证明】 因为x1, x2是方程f(x)-x=0的两根,所以f(x)-x=a(x-x1)(x-x2),即f(x)=a(x-x1)(x-x2)+x.()当x(0, x1)时,x-x10, x-x20,所以f(x)x.其次f(x)-x1=(x-x1)a(x-x2)+1=a(x-x1)x-x2+0,所以f(x)x1.综上,xf(x)1,求证:方程的正根比1小,负根比-1大。【证明】 方程化为2a2x2+2ax+1-a2=0.构造f(x)=2a2x2+2ax+1-a2,f(1)=(a+1)20, f(-1)=(a-1)20, f(0)=1-a20,所以f(x)在区间(-1,0)和(0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 竞赛 讲义 免费
限制150内