ANSYS结构非线性分析指南-第三章.doc
《ANSYS结构非线性分析指南-第三章.doc》由会员分享,可在线阅读,更多相关《ANSYS结构非线性分析指南-第三章.doc(102页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-dateANSYS结构非线性分析指南-第三章8 非线性结构分析第三章 几何非线性与屈曲分析3.1 几何非线性3.1.1 大应变效应 一个结构的总刚度依赖于它的组成部件(单元)的方向和单刚。当一个单元的结点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变。首先,如果这个单元的形状改变,它的单元刚度将改变(图3-1(a))。其次,如果这个单元的取向改变,它的局部刚度转化
2、到全局部件的变换也将改变(图3-1(b)。小的变形和小的应变分析假定位移小到足够使所得到的刚度改变无足轻重。这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移(什么时候使用“小”变形和应变依赖于特定分析中要求的精度等级)。相反,大应变分析考虑由单元的形状和取向改变导致的刚度改变。因为刚度受位移影响,且反之亦然,所以在大应变分析中需要迭代求解来得到正确的位移。通过发出NLGEOM,ON(GUI路径Main MenuSolutionAnalysis Options),来激活大应变效应。这种效应改变单元的形状和取向,且还随单元转动表面载荷。(集中载荷和惯性载荷
3、保持它们最初的方向。)在大多数实体单元(包括所有的大应变和超弹性单元),以及部分的壳单元中大应变特性是可用的。在ANSYS/Linear Plus程序中大应变效应是不可用的。图31 大应变和大转动大应变过程对单元所承受的总旋度或应变没有理论限制。(某些ANSYS单元类型将受到总应变的实际限制参看下面。)然而,应限制应变增量以保持精度。 因此,总载荷应当被分成几个较小的步,这可用NSUBST,DELTIM,AUTOTS命令自动实现(通过GUI路径 Main MenuSolutionTime/Frequent)。无论何时如果系统是非保守系统,如在模型中有塑性或摩擦,或者有多个大位移解存在,如具有突
4、然转换现象,使用小的载荷增量具有双重重要性。3.1.2 应力应变 在大应变求解中,所有应力应变输入和结果将依据真实应力和真实(或对数)应变(一维时,真实应变将表示为 。 对于响应的小应变区,真实应变和工程应变基本上是一致的)。要从小工程应变转换成对数应变,使用。要从工程应力转换成真实应力,使用 (这种应力转化仅对不可压缩塑性应力应变数据是有效的)。 为了得到可接受的结果,对真实应变超过50%的塑性分析,应使用大应变单元(VISCO106、107及108)。 应该认识到在大应变分析的任何迭代中粗劣的单元形状(也就是,大的纵横比,过度的顶角以及具有负面积的已扭曲单元)将是有害的。因此,必须象注意单
5、元的原始形状一样注意单元已扭曲后的形状(除了探测出具有负面积的单元外,ANSYS程序对于求解中遇到的粗劣单元形状不发出任何警告,必须进行人工检查)。如果已扭曲的网格是不能接受的,可以人工改变开始网格(在容限内)以产生合理的最终结果(参看图3-2)。图32 在大应变分析中避免低劣单元形状的发展具有小应变的大偏移3.1.3 小应变大位移某些单元支持大的转动,但不支持大的形状改变。一种称作大位移的大应变特性的受限形式对这类单元是适用的。在一个大位移分析中,单元的转动可以任意地大,但是应变假定是小的。大位移效应(没有大的形状改变)在ANSYS/Linear Plus程序中是可用的(在ANSYS/Mec
6、hanical,以及ANSYS/Structural产品中,对于支持大应变特性的单元,大位移效应不能独立于大应变效应被激活。)。在所有梁单元和大多数壳单元中,以及许多非线性单元中这个特性是可用的。通过打开NLGEOM,ON (GUI路径Main MenuSolutionAnalysis Options)来激活那些支持这一特性的单元中的大位移效应。3.1.4 应力刚化 结构的面外刚度可能大大地受那个结构中面内应力状态的影响。面内应力和横向刚度之间的耦合,通称为应力刚化,在薄的、高应力的结构中,如缆索或薄膜中,是最明显的。一个鼓面,当它绷紧时会产生垂向刚度,这是应力强化结构的一个普通的例子。尽管应
7、力刚化理论假定单元的转动和应变是小的,在某些结构的系统中(如在图3-3(a)中),刚化应力仅可以通过进行大挠度分析得到。在其它的系统中(如图3-3(b)中),刚化应力可采用小挠度或线性理论得到。图33 应力刚化梁 要在第二类系统中使用应力硬化,必须在第一个载荷步中发出SSTIF,ON(GUI路径Main MenuSolutionAnalysis Options)。ANSYS程序通过生成和使用一个称作“应力刚化矩阵”的辅助刚度矩阵来考虑应力刚化效应。尽管应力刚度矩阵是使用线性理论得到的,但由于应力(应力刚度矩阵)在每次迭代之间是变化的,因而它是非线性的。 大应变和大挠度过程包括初始应力效应,它作
8、为大应变和大挠度理论的一个子集,对于许多实体和壳单元,当大变形效应被激活时NLGEOM,ON(GUI路径Main MenuSolutionAnalysis Options)自动包括初始刚化效应。 在大变形分析中NLGEOM,ON包含应力刚化效应SSTIF,ON将把应力刚度矩阵加到主刚度矩阵上,以在具有大应变或大挠度性能的大多数单元中产生一个“近似的”协调切向刚度矩阵。例外情况包括BEAM4和SHELL63,以及不把“应力刚化”列为特殊特征的任何单元。对于BEAM4和SHELL63,你可以通过设置KEYOPT(2)=1和NLGEOM,ON在初始求解前激活应力刚化。当大变形效应为ON(开)时这个K
9、EYOPT设置激活一个协调切向刚度矩阵选项。当协调切向刚度矩阵被激活时(也就是,当KEYOPT(2)=1且NLGEOM,ON时)SSTIF对BEAM4和SHELL63将不起作用。在大变型分析中使用应力刚化的建议: 对于大多数实体单元,应力刚化的效应是与问题相关的,在大变型分析中的应用可能提高也可能降低收敛性。在大多数情况下,首先应该尝试一个应力刚化效应OFF(关闭)的分析。如果你正在模拟一个受到弯曲或拉伸载荷的薄的结构,当用应力硬化OFF(关)时遇到收敛困难,则尝试打开应力硬化。 应力刚化不建议用于包含“不连续单元”(由于状态改变,刚度上经历突然的不连续变化的非线性单元,如各种接触单元,SOL
10、ID65,等等)的结构。对于这样的问题,当应力刚化为ON(开)时,结构刚度上的不连续线性很容易导致求解“胀破”。 对于桁、梁和壳单元,在大挠度分析中通常应使用应力刚化。实际上,在应用这些单元进行非线性屈曲和后屈曲分析时,只有当打开应力刚化时才得到精确的解。(对于BEAM4和SHELL63,你通过设置单元KEYOPT(2)=1激活大挠度分析中NLGEOM,ON的应力刚化。)然而,当你应用杆、梁或者壳单元来模拟刚性连杆,耦合端或者结构刚度的大变化时,你不应使用应力刚化。注意:无论何时使用应力刚化,务必定义一系列实际的单元实常数。使用不是“成比例”(也就是,人为的放大或缩小)的实常数将影响对单元内部
11、应力的计算,且将相应地降低那个单元的应力刚化效应。结果将是降低解的精度。3.1.5 旋转软化旋转软化是指动态质量效应调整(软化)旋转物体的刚度矩阵。在小位移分析中这种调整近似于由于大的环形运动而导致几何形状改变的效应。通常它和预应力PSTRES(GUI路径Main MenuSolutionAnalysis Options)一起使用,这种预应力由旋转物体中的离心力所产生。它不应和其它变形非线性,大挠度和大应变一起使用。旋转软化用OMEGA命令中的KPSIN来激活(GUI路径Main MenuPreprocessorLoads-Loads-Apply-Structural-OtherAngular
12、 Velotity)。3.2 大应变分析实例 在这个实例分析中,我们将进行一个两块钢板压一个圆盘的非线性分析。3.2.1 问题描述 由于上下两块钢板的刚度比圆盘的刚度大得多,钢板与圆盘壁面之间的摩擦足够大。因此,在建模时只建立圆盘的模型。 用轴对称单元模拟圆盘,求解通过单一载荷步来实现。由于模型和载荷的上下对称性,我们只需建立圆盘的上半部分模型。由于钢板的刚度很大,因此我们在建模时将圆盘上面结点的Y方向上的位移耦合起来。又由于钢板与圆盘壁面之间的摩擦足够大,圆盘与钢板之间不会产生滑动,因此我们将圆盘上面结点的X方向的位移约束起来。3.2.2 问题详细说明 下列材料性质应用于这个问题: EX=1
13、000 (杨氏模量)NUXY=0.35(泊松比)Yield Strength =1 (屈服强度)Tang Mod=2.99(剪切模量)3.2.3 问题描述图图3-4 问题描述图3.2.4 求解步骤(GUI方法)步骤一:建立模型,给定边界条件。 在这一步中,建立计算分析所需要的模型,定义单元类型,材料性质 划分网格,给定边界条件。并将数据库文件保存为“exercise1.db”。 在此,对这一步的过程不作详细叙述(您也可以从3.2.5中取出命令流段完成这一步骤)。步骤二:恢复数据库文件“exercise.db” Utility MenuFileResume from步骤三:进入求解器。 Main
14、 Menusolution步骤四:定义分析类型和选项 1、选择菜单路径Main MenuSolution-Analysis Type-New Analysis. 单击“Static”来选中它然后单击OK。 2、择菜单路径Main MenuSolutionUnabridged MenuAnalysis Options。 出现对话框。3、单击Large deform effects (大变型效应选项)使之为ON, 然后单击OK。步骤五:打开预测器。 Main menu SolutionUnabridged MenuLoad step opts-Nonlinear Predictor步骤六:在结点1
15、4的Y方向施加一个大小为-0.3的位移 Main menu Solution -Load -Apply displacement On Nodes步骤七:设置载荷步选项1、选择菜单路径Main Menu SolutionUnabridged MenuLoad step opts-Time/Frequenc Time and substps。对话框出现。 2、对time at end of Load Step(载荷步终止时间)键入0.3 3、对Number of substeps (子步数)键入120。4、单击automatic time stepping option(自动时间步长选项)使之为
16、ON,然后单击OK。5、选择菜单路径Main Menu SolutionUnabridged Menu Load step opts-Output ctrls DB/Resuls File。对话框出现。 6、单击“Every Nth substep”(“每隔N个子步”)且选中它。 7、对于Value of N (N的值)键入10然后单击OK。 8、单击ANSTS Toolbar上的SAVE_DB。步骤八:求解问题 1、选择菜单路径Main MenuSolution-Solve-Current LS。2、检阅状态窗口中的信息然后单击close。3、单击Solve Current Load Ste
17、p(求解当前载荷步)对话框中的OK开 始求解。步骤九:进行所需要的后处理。3.2.5 求解步骤(命令流方法)Fini/cle/prep7/title,upsetting of an axisymmetric disket,1,106,1mp,ex,1,1000mp,nuxy,0.3tb,biso,1tbdata,1,2.99rect,0,6,0,1.5lesi,1,12lesi,2,5mshape,0,2dmshkey,1amesh,allnsel,y,1.5cp,1,uy,allnsel,allfini/solunsel,s,loc,x,0dsym,symm,xnsel,s,loc,y,0d
18、sym,symm,ynsel,alld,all,uznsel,y,1.5d,all,uxnsel,allfinisave,exercise1,dbresume,exercise1,db/solusionnlgeom,onpred,ond,14,uy,-0.3time,0.3autot,onnsubst,120outres,all,-10solvefini/post1set,last/dsca,1pldi,2plns,nl,svfini/post26rfor,2,14,f,yadd,2,2,-1.0plva,2fini3.3 屈曲分析屈曲分析是一种用于确定结构开始变得不稳定时的临界载荷和屈曲模态
19、形状(结构发生屈曲响应时的特征形状)的技术,非线性屈曲分析是一种典型而且重要的几何非线性分析,因此后面各节对屈曲分析的概念和过程进行详细介绍。3.3.1 屈曲分析的类型ANSYS在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Structural以及ANSYS/Professional中,提供两种结构屈曲载荷和屈曲模态的分析方法:非线性屈曲分析和特征值(线性)屈曲分析。这两种方法通常得到不同的结果,下面先讨论一下二者的区别。3.3.1.1 非线性屈曲分析非线性屈曲分析比线性屈曲分析更精确,故建议用于对实际结构的设计或计算。该方法用一种逐渐增加载荷的非线性静
20、力分析技术来求得使结构开始变得不稳定时的临界载荷。见图3-5a。 应用非线性技术,模型中就可以包括诸如初始缺陷、塑性、间隙、大变形响应等特征。此外,使用偏离控制加载,用户还可以跟踪结构的后屈曲行为(这在结构屈曲到一个稳定外形,如浅拱的“跳跃”屈曲的情况下,很有用处)。3.3.1.2 特征值屈曲分析 特征值屈曲分析用于预测一个理想弹性结构的理论屈曲强度(分叉点)。该方法相当于教科书里的弹性屈曲分析方法。例如,一个柱体结构的特征值屈曲分析的结果,将与经典欧拉解相当。但是,初始缺陷和非线性使得很多实际结构都不是在其理论弹性屈曲强度处发生屈曲。因此,特征值屈曲分析经常得出非保守结果,通常不能用于实际的
21、工程分析。图3-5 屈曲曲线3.3.2 屈曲分析的用到的命令 用户可以应用与静力分析相同的命令集来进行屈曲分析。同样,不论何种分析,都可以应用类似的GUI菜单来建立模型和求解。 本章3.6 给出了用GUI方法和命令流方法求解屈曲分析的例子。有关命令可参阅ANSYS Commands Reference。3.4 非线性屈曲分析 非线性屈曲分析是在大变形效应开关打开的情况下NLGEOM,ON的一种静力分析,该分析过程一直进行到结构的极限载荷或最大载荷。其它诸如塑性等非线性也可以包括在分析中。3.4.1 施加载荷增量 非线性屈曲分析的基本方法是,逐步地施加一个恒定的载荷增量,直到解开始发散为止。尤其
22、重要的是,要一个足够小的载荷增量,来使载荷达到预期的临界屈曲载荷。若载荷增量太大,则屈曲分析所得到的屈曲载荷就可能不精确。在这种情况下,打开二分和自动时间步长功能AUTOTS,ON有助于避免这种问题。3.4.2 自动时间步长功能 打开自动时间步长功能,程序将自动地寻找出屈曲载荷。如果在一个静力分析中,打开了自动时间步长功能并且加载方式是斜坡加载,而在某一给定载荷下解不收敛,程序就会将载荷载增量减半,在这个载荷下重新进行新一轮求解。在一个屈曲分析中,每一次这种收敛失败都通常伴随着一个“负主对角”信息,这意味着所施加的荷载等于或超过了屈曲载荷。如果程序接着又成功地求得了一个收敛解,则用户可以忽略这
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ANSYS 结构 非线性 分析 指南 第三
限制150内