高中数学概率与统计(理科)常考题型归纳.doc
《高中数学概率与统计(理科)常考题型归纳.doc》由会员分享,可在线阅读,更多相关《高中数学概率与统计(理科)常考题型归纳.doc(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高中数学概率与统计(理科)常考题型归纳高中数学概率与统计(理科)常考题型归纳高中数学概率与统计(理科)常考题型归纳题型一:常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解
2、该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记|XY|,求随机变量的分布列.解依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的概率为.设“这4个人中恰有i人去参加甲游戏”为事件Ai(i0,
3、1,2,3,4).则P(Ai)C.(1)这4个人中恰有2人去参加甲游戏的概率P(A2)C.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则BA3A4,且A3与A4互斥,P(B)P(A3A4)P(A3)P(A4)CC.(3)依题设,的所有可能取值为0,2,4.且A1与A3互斥,A0与A4互斥.则P(0)P(A2),P(2)P(A1A3)P(A1)P(A3)CC,P(4)P(A0A4)P(A0)P(A4)CC.所以的分布列是024P【类题通法】(1)本题4个人中参加甲游戏的人数服从二项分布,由独立重复试验,4人中恰有i人参加甲游戏的概率PC,这是本题求解的关键.(2)解题
4、中常见的错误是不能分清事件间的关系,选错概率模型,特别是在第(3)问中,不能把0,2,4的事件转化为相应的互斥事件Ai的概率和.【变式训练】甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为,乙队每人答对的概率都是,设每人回答正确与否相互之间没有影响,用表示甲队总得分.(1)求2的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.解(1)2,则甲队有两人答对,一人答错,故P(2);(2)设甲队和乙队得分之和为4为事件A,甲队比乙队得分高为事件B.设乙队得分为,则B.
5、P(1),P(3),P(1)C,P(2)C,P(3)C,P(A)P(1)P(3)P(2)P(2)P(3)P(1),P(AB)P(3)P(1),所求概率为P(B|A).题型二:离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,每年均有解答题的考查,属于中档题.复习中应强化应用题目的理解与掌握,弄清随机变量的所有取值是正确列随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中强化解答题的规范性训练.【例2】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢
6、得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).解用A表示“甲在4局以内(含4局)赢得比赛”,Ak表示“第k局甲获胜”,Bk表示“第k局乙获胜”,则P(Ak),P(Bk),k1,2,3,4,5.(1)P(A)P(A1A2)P(B1A2A3)P(A1B2A3A4)P(A1)P(A2)P(B1)P(A2)P(A3)P(A1)P(B2)P(A3)P(A4).(2)X的可能取值为2,3,4,5.P(X2)P(A1A2)P(B1B2)P(A1)P(A2)P(B1)P(B
7、2),P(X3)P(B1A2A3)P(A1B2B3)P(B1)P(A2)P(A3)P(A1)P(B2)P(B3),P(X4)P(A1B2A3A4)P(B1A2B3B4)P(A1)P(B2)P(A3)P(A4)P(B1)P(A2)P(B3)P(B4),P(X5)1P(X2)P(X3)P(X4).故X的分布列为X2345PE(X)2345.【类题通法】求离散型随机变量的均值和方差问题的一般步骤第一步:确定随机变量的所有可能值;第二步:求每一个可能值所对应的概率;第三步:列出离散型随机变量的分布列;第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【变式训练】为回馈顾客,某商场拟
8、通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求:顾客所获的奖励额为60元的概率;顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解(1)设顾客所获的奖励额为X
9、.依题意,得P(X60),即顾客所获的奖励额为60元的概率为.依题意,得X的所有可能取值为20,60.P(X60),P(X20),即X的分布列为X2060P所以顾客所获的奖励额的数学期望为E(X)206040(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 概率 统计 理科 题型 归纳
限制150内