高中数学人教版必修四常见公式及知识点系统总结(全).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高中数学人教版必修四常见公式及知识点系统总结(全).doc》由会员分享,可在线阅读,更多相关《高中数学人教版必修四常见公式及知识点系统总结(全).doc(45页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高中数学人教版必修四常见公式及知识点系统总结(全)高中三角函数公式大全必修四常考公式及高频考点第一部分 三角函数与三角恒等变换考点一 角的表示方法1.终边相同角的表示方法:所有与角a终边相同的角,连同角a在内可以构成一个集合:|= k360 +,kZ 2.象限角的表示方法:第一象限角的集合为| k360 k360 +90 ,kZ 第二象限角的集合为| k360 +90
2、 k360 +180 ,kZ 第三象限角的集合为| k360 +180 k360 +270 ,kZ 第四象限角的集合为| k360 +270 0,且x=0时的相位(x+=)称为初相.如果不满足0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+600)的初相是-600求解思路:利用三角函数对称性与周期性的关系,解.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一.2.“一图、两域、四性”“一图”:学好三角函数,图像是关键。易错提醒:“左加右减、上加下减”中“左加右减”仅仅针对自变量x,不可
3、针对-x或2x等.例:“两域”:(1) 定义域求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象或数轴法来求解.(2) 值域(最值):a.直接法(有界法):利用sinx,cosx的值域.b.化一法:化为y=Asin(x+)+k的形式逐步分析x+的范围,根据正弦函数单调性写出函数的值域(最值).c.换元法:把sinx或cosx看作一个整体,化为求一元二次函数在给定区间上的值域(最值)问题. 例:1.y=asinx2+bsinx+c2.y=asinx2+bsinxcosx+ccosx23.y=(asinx+c)/(bcosx+d)4.y=a(sinxcosx)+bsinx
4、cosx+c“四性”:(1)单调性 函数y=Asin(x+)(A0, 0)图象的单调递增区间由2k-x+2k,kZ解得, 单调递减区间由2k+x+0, 0)图象的单调递增区间由2k+x+2k2,kZ解得, 单调递减区间由2kx+0, 0)图象的单调递增区间由k-x+k,kZ解得,. 规律总结:注意、A为负数时的处理技巧(2)对称性函数y=Asin(x+)的图象的对称轴由x+= k(kZ)解得,对称中心的横坐标由x+= k(kZ)解得;函数y=Acos(x+)的图象的对称轴由x+= k(kZ)解得,对称中心的横坐标由x+=k(kZ) 解得;函数y=Atan(x+)的图象的对称中心由x+= k(k
5、Z)解得. 规律总结:可以是单个角或多个角的代数式.无需区分、A符号.(3)奇偶性函数yAsin(x),xR是奇函数k(kZ),函数yAsin(x),xR是偶函数k(kZ);函数yAcos(x),xR是奇函数k(kZ);函数yAcos(x),xR是偶函数k(kZ);函数yAtan(x),xR是奇函数(kZ)规律总结:可以是单个角或多个角的代数式.无需区分、A符号. (4)周期性函数yAsin(x)或yAcos(x)的最小正周期T,yAtan(x) 的最小正周期T.考点六 常见公式常见公式要做到“三用”:正用、逆用、变形用1.同角三角函数的基本关系;=2.三角函数化简思路:“去负、脱周、化锐”(
6、1)去负,即负角化正角:sin(-a)=-sina; cos(-a)=cosa;tan(-a)=-tana;(2)脱周,即将不在(0,2)的角化为(0,2)的角:sin(2k+a)=sina; cos(2k+a)=cosa;tan(2k+a)=-tana;(3)化锐,即将在(0,2)的角化为锐角:6组诱导公式,口诀:奇变偶不变,符号看象限. 均化为“k/2a”,做到“两观察、一变”。一观察:k是奇数还是偶数;二观察:k/2a终边所在象限,再由k/2a终边所在象限,确定原函数对应函数值的正负.一变:正弦变余弦、余弦变正弦、正切利用商的关系变换. 其中公式(1)也可理解为终边相同角的三角函数值相同
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中 学人 必修 常见 公式 知识点 系统 总结
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内