高三数学一轮复习必备精品37:空间夹角和距离备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载.doc
《高三数学一轮复习必备精品37:空间夹角和距离备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载.doc》由会员分享,可在线阅读,更多相关《高三数学一轮复习必备精品37:空间夹角和距离备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载.doc(62页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高三数学一轮复习必备精品37:空间夹角和距离 备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载高三数学一轮复习必备精品37:空间夹角和距离 备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载第37讲 空间夹角和距离备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】一【课标要求】1能借助空间几何体内的位置关系求空间的夹角和距离;2能用向
2、量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。二【命题走向】空间的夹角和距离问题是立体几何的核心内容,高考对本讲的考察主要有以下情况:(1)空间的夹角;(2)空间的距离;(3)空间向量在求夹角和距离中的应用预测2010年高考对本讲内容的考察将侧重空间向量的应用求夹角、求距离。课本淡化了利用空间关系找角、求距离这方面内容的讲解,而是加大了向量在这方面内容应用的讲解,因此作为立体几何的解答题,用向量方法处理有关夹角和距离将是主要方法,在复习时应加大这方面的训练力度题型上空间的夹角和距离主要以主观题形式考察三【要点精讲】1空间中各种角包括:异面直线所成的角、直线与平
3、面所成的角以及二面角 (1)异面直线所成的角的范围是。求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决具体步骤如下:利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;证明作出的角即为所求的角;利用三角形来求角(2)直线与平面所成的角的范围是。求直线和平面所成的角用的是射影转化法。DBAC具体步骤如下:找过斜线上一点与平面垂直的直线;连结垂足和斜足,得出斜线在平面的射影,确定出所求的角;把该角置于三角形中计算。注:斜线和平面所成的角,是它和平面内任何一条直线所成的一切角中的最小角,即若为线面角,为斜线与平面内任何
4、一条直线所成的角,则有;(3)确定点的射影位置有以下几种方法:斜线上任意一点在平面上的射影必在斜线在平面的射影上;如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;如果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上;两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上;利用某些特殊三棱锥的有关性质,确定顶点在底面上的射影的位置:a.如果侧棱相等或侧棱与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的外心;b. 如果顶点到底面各边距离相等或侧面与底面所成的角相等,那么顶点落在底面上的射影是
5、底面三角形的内心(或旁心);c. 如果侧棱两两垂直或各组对棱互相垂直,那么顶点落在底面上的射影是底面三角形的垂心;(4)二面角的范围在课本中没有给出,一般是指,解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种方法棱上一点双垂线法:在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角斜面面
6、积和射影面积的关系公式:(为原斜面面积,为射影面积,为斜面与射影所成二面角的平面角)这个公式对于斜面为三角形,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时,如果能找得斜面面积的射影面积,可直接应用公式,求出二面角的大小2空间的距离(1)点到直线的距离:点到直线的距离为点到直线的垂线段的长,常先找或作直线所在平面的垂线,得垂足为,过作的垂线,垂足为连,则由三垂线定理可得线段即为点到直线的距离。在直角三角形中求出的长即可。点到平面的距离:点到平面的距离为点到平面的垂线段的长常用求法作出点到平面的垂线后求出垂线段的长;转移法,如果平面的斜线上两点,到斜足的距离,的比为,则点,到平
7、面的距离之比也为特别地,时,点,到平面的距离相等;体积法(2)异面直线间的距离:异面直线间的距离为间的公垂线段的长常有求法先证线段为异面直线的公垂线段,然后求出的长即可找或作出过且与平行的平面,则直线到平面的距离就是异面直线间的距离找或作出分别过且与,分别平行的平面,则这两平面间的距离就是异面直线间的距离根据异面直线间的距离公式求距离。(3)直线到平面的距离:只存在于直线和平面平行之间为直线上任意一点到平面间的距离。(4)平面与平面间的距离:只存在于两个平行平面之间为一个平面上任意一点到另一个平面的距离。以上所说的所有距离:点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离。
8、所以均可以用求函数的最小值法求各距离abEF3空间向量的应用(1)用法向量求异面直线间的距离如右图所示,a、b是两异面直线,是a和b 的法向量,点Ea,Fb,则异面直线 a与b之间的距离是 ;ABC(2)用法向量求点到平面的距离如右图所示,已知AB是平面的 一条斜线,为平面的法向量,则 A到平面的距离为;(3)用法向量求直线到平面间的距离首先必须确定直线与平面平行,然后将直线到平面的距离问题转化成直线上一点到平面的距离问题(4)用法向量求两平行平面间的距离首先必须确定两个平面是否平行,这时可以在一个平面上任取一点,将两平面间的距离问题转化成点到平面的距离问题。(5)用法向量求二面角如图,有两个
9、平面与,分别作这两个平面的法向量与,则平面与所成的角跟法向量与所成的角相等或互补,所以首先必须判断二面角是锐角还是钝角。(6)法向量求直线与平面所成的角要求直线a与平面所成的角,先求这个平面的法向量与直线a的夹角的余弦,易知=或者。四【典例解析】题型1:异面直线所成的角例1(1)直三棱住A1B1C1ABC,BCA=,点D1、F1 分别是A1B1、A1C1的中点,BC=CA=CC1,则BD1与AF1所成角的余弦值是( ) (A ) (B) (C) (D)解析:(1)连结D1F1,则D1F1,BC D1F1设点E为BC中点,D1F1BE,BD1EF1,EF1A或其补角即为BD1与AF1所成的角。由
10、余弦定理可求得。故选A。(2)(2009广东卷理)(本小题满分14分)zyxE1G1如图6,已知正方体的棱长为2,点是正方形的中心,点、分别是棱的中点设点分别是点,在平面内的正投影(1)求以为顶点,以四边形在平面内的正投影为底面边界的棱锥的体积;(2)证明:直线平面;(3)求异面直线所成角的正弦值.解:(1)依题作点、在平面内的正投影、,则、分别为、的中点,连结、,则所求为四棱锥的体积,其底面面积为 ,又面,.(2)以为坐标原点,、所在直线分别作轴,轴,轴,得、,又,则,即,又,平面.(3),则,设异面直线所成角为,则.A1B1C1D1ABCDExyz例2已知正方体ABCDA1B1C1D1的棱
11、长为2,点E为棱AB的中点。求:D1E与平面BC1D所成角的大小(用余弦值表示)解析:建立坐标系如图,则、,。不难证明为平面BC1D的法向量, 。 D1E与平面BC1D所成的角的余弦值为。点评:将异面直线间的夹角转化为空间向量的夹角。题型2:直线与平面所成的角例3PA、PB、PC是从P点出发的三条射线,每两条射线的夹角均为,那么直线PC与平面PAB所成角的余弦值是( )DA. B. C. D. 解:构造正方体如图所示,过点C作CO平面PAB,垂足为O,则O为正ABP的中心,于是CPO为PC与平面PAB所成的角。设PC=a,则PO=,故,即选C。思维点拨:第(2)题也可利用公式直接求得。例4(2
12、009北京卷文)(本小题共14分)如图,四棱锥的底面是正方形,点E在棱PB上.()求证:平面;()当且E为PB的中点时,求AE与平面PDB所成的角的大小.【解法1】本题主要考查直线和平面垂直、平面与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力、运算能力和推理论证能力()四边形ABCD是正方形,ACBD,PDAC,AC平面PDB,平面.()设ACBD=O,连接OE, 由()知AC平面PDB于O, AEO为AE与平面PDB所的角, O,E分别为DB、PB的中点, OE/PD,又, OE底面ABCD,OEAO, 在RtAOE中, ,即AE与平面PDB所成的角的大小为.【解法2】如图,以D
13、为原点建立空间直角坐标系, 设则,(),ACDP,ACDB,AC平面PDB,平面.()当且E为PB的中点时, 设ACBD=O,连接OE, 由()知AC平面PDB于O, AEO为AE与平面PDB所的角, ,即AE与平面PDB所成的角的大小为.点评:先处理平面的法向量,再求直线的方向向量与法向量夹角间的夹角转化为线面角。题型3:二面角例5在四棱锥PABCD中,ABCD为正方形,PA平面ABCD,PAABa,E为BC中点。(1)求平面PDE与平面PAB所成二面角的大小(用正切值表示);(2)求平面PBA与平面PDC所成二面角的大小解析:(1)延长AB、DE交于点F,则PF为平面PDE与平面PAD所成
14、二面角的棱,PA平面ABCD,ADPA、AB, PAAB=ADA平面BPA于A,过A作AOPF于O,连结OD,则AOD即为平面PDE与平面PAD所成二面角的平面角。易得,故平面PDE与平PAD所成二面角的正切值为;(2)解法1(面积法)如图ADPA、AB, PAAB=A,DA平面BPA于A, 同时,BC平面BPA于B,PBA是PCD在平面PBA上的射影, 设平面PBA与平面PDC所成二面角大小为,cos=SPAB/SPCD=/2 =450。即平面BAP与平面PDC所成的二面角的大小为45。解法2(补形化为定义法)如图:将四棱锥P-ABCD补形得正方体ABCDPQMN,则PQPA、PD,于是AP
15、D是两面所成二面角的平面角。在RtPAD中,PA=AD,则APD=45。即平面BAP与平面PDC所成二面角的大小为45。例6(1)(2009山东卷理)(本小题满分12分)E A B C F E1 A1 B1 C1 D1 D 如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB/CD,AB=4, BC=CD=2, AA=2, E、E、F分别是棱AD、AA、AB的中点。(1) 证明:直线EE/平面FCC;(2) 求二面角B-FC-C的余弦值。 解法一:(1)在直四棱柱ABCD-ABCD中,取A1B1的中点F1,E A B C F E1 A1 B1 C1 D1 D F1 O P 连接A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高三数学一轮复习必备精品37:空间夹角和距离 备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载 数学 一轮 复习 必备 精品 37 空间 夹角 距离 备注 42 全部 免费 欢迎 下载
链接地址:https://www.taowenge.com/p-23962056.html
限制150内