电大离散数学形成性考核作业5答案(图论部分).doc
《电大离散数学形成性考核作业5答案(图论部分).doc》由会员分享,可在线阅读,更多相关《电大离散数学形成性考核作业5答案(图论部分).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 形成性考核作业 姓 名: 学 号: 得 分: 教师签名: 电大离散数学作业5离散数学图论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年12月5日前完成并上交任课教师(不收电子稿)。并在05任务界面下方点击“保存”和“
2、交卷”按钮,以便教师评分。一、填空题1已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是 15 2设给定图G(如右由图所示),则图G的点割集是 f 3设G是一个图,结点集合为V,边集合为E,则G的结点 度数之和 等于边数的两倍4无向图G存在欧拉回路,当且仅当G连通且 等于出度 5设G=是具有n个结点的简单图,若在G中每一对结点度数之和大于等于 n-1 ,则在G中存在一条汉密尔顿路 6若图G=中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W满足的关系式为 W(G-V1) V1 7设完全图K有
3、n个结点(n2),m条边,当 n为奇数 时,K中存在欧拉回路8结点数v与边数e满足 e=v-1 关系的无向连通图就是树9设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去 4 条边后使之变成树10设正则5叉树的树叶数为17,则分支数为i = 5 二、判断说明题(判断下列各题,并说明理由)1如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路(1) 不正确,缺了一个条件,图G应该是连通图,可以找出一个反例,比如图G是一个有孤立结点的图。2如下图所示的图G存在一条欧拉回路(2) 不正确,图中有奇数度结点,所以不存在是欧拉回路。3如下图所示的图G不是欧拉图而是汉密尔顿图 G 解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电大 离散数学 形成 考核 作业 答案 部分
限制150内