《电大专科统计学原理计算题试题及答案(最新整理).doc》由会员分享,可在线阅读,更多相关《电大专科统计学原理计算题试题及答案(最新整理).doc(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、电大专科统计学原理计算题试题及答案计算题1某单位40名职工业务考核成绩分别为: 68 89 88 84 86 87 75 73 72 68 75 82 97 58 81 54 79 76 95 76 71 60 90 65 76 72 76 85 89 92 64 57 83 81 78 77 72 61 70 81单位规定:60分以下为不及格,6070分为及格,7080分为中,8090分为良,90100分为优。要求:(1)将参加考试的职工按考核成绩分为不及格、及格、中、良、优五组并编制一张考核成绩次数分配表; (2)指出分组标志及类型及采用的分组方法;(3)分析本单位职工业务考核情况。解:(
2、1)成 绩职工人数频率(%)60分以下60-7070-8080-9090-10036151247.51537.53010合 计40100 (2)分组标志为成绩,其类型为数量标志;分组方法为:变量分组中的开放组距式分组,组限表示方法是重叠组限;(3)本单位的职工考核成绩的分布呈两头小, 中间大的 正态分布的形态,说明大多数职工对业务知识的掌握达到了该单位的要求。22004年某月份甲、乙两农贸市场农产品价格和成交量、成交额资料如下品种价格(元/斤)甲市场成交额(万元)乙市场成交量(万斤)甲乙丙1.21.41.51.22.81.5211合计5.54试问哪一个市场农产品的平均价格较高?并说明原因。解:
3、品种价格(元)X甲市场乙市场成交额成交量成交量成交额mm/xfxf甲乙丙1.21.41.51.22.81.51212112.41.41.5合计5.5445.3解:先分别计算两个市场的平均价格如下:甲市场平均价格(元/斤) 乙市场平均价格(元/斤) 说明:两个市场销售单价是相同的,销售总量也是相同的,影响到两个市场平均价格高低不同的原因就在于各种价格的农产品在两个市场的成交量不同。 3某车间有甲、乙两个生产组,甲组平均每个工人的日产量为36件,标准差为9.6件;乙组工人日产量资料如下:日产量(件)工人数(人)1525354515383413要求:计算乙组平均每个工人的日产量和标准差; 比较甲、乙
4、两生产小组哪个组的日产量更有代表性? 解:(1)(件) (件) (2)利用标准差系数进行判断: 因为0.305 0.267故甲组工人的平均日产量更有代表性。 4某工厂有1500个工人,用简单随机重复抽样的方法抽出50个工人作为样本,调查其月平均产量水平,资料如下: 日产量(件)524534540550560580600660 工人数(人)469108643要求:(1)计算样本平均数和抽样平均误差(重复与不重复) (2)以95.45%的可靠性估计该厂工人的月平均产量和总产量的区间。 解: (1)样本平均数 样本标准差 重复抽样: 不重复抽样: (2)抽样极限误差 = 24.59 =9.18件总体
5、月平均产量的区间: 下限: =560-9.18=550.82件 上限:=560+9.18=569.18件 总体总产量的区间:(550.821500 826230件; 569。181500 853770件) 5采用简单随机重复抽样的方法,在2000件产品中抽查200件,其中合格品190件.要求:(1)计算合格品率及其抽样平均误差(2)以95.45%的概率保证程度(t=2)对合格品率和合格品数量进行区间估计。(3)如果极限误差为2.31%,则其概率保证程度是多少? 解:(1)样本合格率p = n1n = 190200 = 95% 抽样平均误差 = 1.54%(2)抽样极限误差p= tp = 21.
6、54% = 3.08%下限:p=95%-3.08% = 91.92%上限:p=95%+3.08% = 98.08% 则:总体合格品率区间:(91.92% 98.08%) 总体合格品数量区间(91.92%2000=1838件 98.08%2000=1962件) (3)当极限误差为2.31%时,则概率保证程度为86.64% (t=) 6 某企业上半年产品产量与单位成本资料如下:月 份产量(千件)单位成本(元)123456234345737271736968要求:()计算相关系数,说明两个变量相关的密切程度。 ()配合回归方程,指出产量每增加1000件时,单位成本平均变动多少? ()假定产量为600
7、0件时,单位成本为多少元解:计算相关系数时,两个变量都是随机变量,不须区分自变量和因变量。考虑到要配和合回归方程,所以这里设产量为自变量(),单位成本为因变量()月份产量(千件)单位成本(元)123456234345737271736968491691625532951845041532947614624146216284219276340合 计2142679302681481 ()计算相关系数: 说明产量和单位成本之间存在高度负相关。 ()配合回归方程 =-1.82 =77.37 回归方程为:.产量每增加1000件时,单位成本平均减少.元 ()当产量为件时,即,代入回归方程:.(元) 7根据
8、企业产品销售额(万元)和销售利润率(%)资料计算出如下数据: n=7 =1890 =31.1 2=535500 2=174.15 =9318 要求: (1) 确定以利润率为因变量的直线回归方程. (2)解释式中回归系数的经济含义. (3)当销售额为500万元时,利润率为多少? 解:(1)配合直线回归方程: b= = =0.0365 a= =-5.41 则回归直线方程为: yc=-5.41+0.0365x (2)回归系数b的经济意义:当销售额每增加一万元,销售利润率增加0.0365% (3)计算预测值: 当x=500万元时 yc=-5.41+0.0365=12.8% 8 某商店两种商品的销售资料
9、如下:商品单位销售量单价(元)基期计算期基期计算期甲乙件公斤50150601608121014要求:(1)计算两种商品销售额指数及销售额变动的绝对额;(2)计算两种商品销售量总指数及由于销售量变动影响销售额的绝对额;(3)计算两种商品销售价格总指数及由于价格变动影响销售额的绝对额。 解:(1)商品销售额指数= 销售额变动的绝对额:元 (2)两种商品销售量总指数= 销售量变动影响销售额的绝对额元 (3)商品销售价格总指数= 价格变动影响销售额的绝对额:元 9某商店两种商品的销售额和销售价格的变化情况如下:商品单位销售额(万元)1996年比1995年销售价格提高(%)1995年1996年甲乙米件1
10、2040130361012要求:(1)计算两种商品销售价格总指数和由于价格变动对销售额的影响绝对额。 (2)计算销售量总指数,计算由于销售量变动,消费者增加(减少)的支出金额。解:(1)商品销售价格总指数= 由于价格变动对销售额的影响绝对额:万元 (2)计算销售量总指数:商品销售价格总指数=而从资料和前面的计算中得知: 所以:商品销售量总指数=,由于销售量变动,消费者增加减少的支出金额: -10已知两种商品的销售资料如表:品 名单位销售额(万元)2002年比2001年销售量增长(%)2001年2002年电 视自行车台辆500045008880420023-7合计-950013080- 要求:
11、(1)计算销售量总指数; (2)计算由于销售量变动,消费者增加(减少)的支出金额。 (3) 计算两种商品销售价格总指数和由于价格变动对销售额的影响绝对额。 解:(1)销售量总指数 (2)由于销售量变动消费者多支付金额=10335-9500=835(万元) (3)计算两种商品销售价格总指数和由于价格变动对销售额的影响绝对额。 参见上题的思路。通过质量指标综合指数与调和平均数指数公式之间的关系来得到所需数据。 11某地区1984年平均人口数为150万人,1995年人口变动情况如下:月份1369次年1月月初人数102185190192184计算:(1)1995年平均人口数;(2)1984-1995年
12、该地区人口的平均增长速度.解:(1)1995年平均人口数=181.38万人(2)1984-1995年该地区人口的平均增长速度: 12某地区19951999年粮食产量资料如下:年份1995年1996年1997年1998年1999年粮食产量(万斤)434472516584618要求:(1)计算各年的逐期增长量、累积增长量、环比发展速度、定基发展速度;(2)计算1995年-1999年该地区粮食产量的年平均增长量和粮食产量的年平均发展速度;( 3)如果从1999年以后该地区的粮食产量按8%的增长速度发展,2005年该地区的粮食产量将达到什么水平? 解:(1)年 份1995年1996年1997年1998
13、年1999年粮食产量(万斤) 环比发展速度 定基发展速度逐期增长量累积增长量434-4721087610876383851610932118894482584113181345668150618105821424034184平均增长量=(万斤)(万斤) (2)平均发展速度(3)=980.69(万斤)13、甲生产车间30名工人日加工零件数(件)如下: 30 26 42 41 36 44 40 37 37 25 45 29 43 31 36 36 49 34 47 33 43 38 42 32 34 38 46 43 39 35 要求:(1)根据以上资料分成如下几组:2530,3035,3540,
14、 4045,4550计算出各组的频数和频率,整理编制次数分布表。 (2)根据整理表计算工人生产该零件的平均日产量和标准差。解:(1)次数分配表如下:按加工零件数分人数(人)比率(%)253030353540404545503698410203026671333合 计30100(2)=(27.5*3+32.5*6+37.5*9+42.5*8+47.5*4)/30=38.17(件)=5.88(件)142004年某月份甲、乙两农贸市场农产品价格和成交量、成交额资料如下:品种价格(元/斤)甲市场成交额(万元)乙市场成交量(万斤)甲乙丙1.21.41.51.22.81.5211合计5.54试问哪一个市场
15、农产品的平均价格较高?并说明原因。解:甲市场的平均价格:= 5.5/4 = 1.375(元/斤)乙市场的平均价格:= 5.3/4 = 1.325(元/斤)原因:甲市场价格高的成交量大,影响了平均价格偏高。这是权数在这里起到权衡轻重的作用。15某车间有甲、乙两个生产组,甲组平均每个工人的日产量为36件,标准差为9.6件;乙组工人日产量资料如下:日产量(件)工人数(人)102020303040405015383413要求:计算乙组平均每个工人的日产量和标准差; 比较甲、乙两生产小组哪个组的日产量更有代表性? 解:乙小组的平均日产量= 2950/100 = 29.5(件/人)乙小组的标准差= 8.9
16、8(件/人)乙小组= 9.13/28.7=30.46% 甲小组= 9.6/36=26.67%所以标准差系数较小的甲小组工人的平均日产量更具有代表性。16某工厂有1500个工人,用简单随机抽样的方法抽出50个工人作为样本,调查其月平均产量水平,资料如下: 日产量(件)524534540550560580600660 工人数(人)469108643要求:(1)计算样本平均数和抽样平均误差(重复和不重复) (2)以95.45%的可靠性估计该厂工人的月平均产量和总产量的区间。解:(1)平均日产量= 560(件/人)标准差= 32.45(件/人)重复抽样抽样误差:=4.59(件/人)不重复抽样抽样误差:
17、=4.51(件/人)(2)极限误差:、t=2;估计范围: 该厂月平均产量区间范围分别为550.82,569.18和550.98,569.02该厂总产量范围分别为826230, 853770和826470,85353017采用简单随机重复抽样的方法,在2000件产品中抽查200件,其中合格品190件.要求:(1)计算合格品率95%及其抽样平均误差。(2)以95.45%的概率保证程度(t=2)对合格品率和合格品数量进行区间估计。解:(1)P=95%,=1.54% (2)、t=2; 合格品率范围91.92%,98.08%,合格品数量范围1839,196218 某企业上半年产品产量与单位成本资料如下:
18、月 份产量(千件)单位成本(元)123456234345737271736968 要求:()计算相关系数,说明两个变量相关的密切程度。 ()配合回归方程,指出产量每增加1000件时,单位成本平均变动多少? ()假定产量为6000件时,单位成本为多少元?解:(1)设产量为自变量x,单位成本为因变量y,产量(千件)x单位成本(元)yxy273453291463729518421647116504128437395329219469164761276568254624340合计: 2142679302681481所需合计数如下: =1481 =79 =21 =30268 =426=0.909,为高度
19、负相关。 (2)建立直线回归方程:令y=a+bx;所以 b=1.82 a=77.36元 ;回归方程为:y=77.361.82x 当产量每增加1000件时,单位成本平均减少1.82元。 (3)预测产量为6000件时单位成本:y=77.361.826=66.44(元)19 某企业生产两种产品的资料如下:产品单位产 量单位成本(元)基期计算期基期计算期甲乙件公斤50150601608121014要求:(1)计算两种产品总成本指数及总成本变动的绝对额;(2)计算两种产品产量总指数及由于产量变动影响总成本的绝对额;(3)计算两种产品单位成本总指数及由于单位成本影响总成本的绝对额。解:(1)总成本指数=1
20、29.09%,=640(2)产量总指数=109.09%,=200(3)单位成本总指数=118.33%,=44020、某企业生产三种产品的有关资料如下:产品名称总生产费用(万元)报告期比基期产量增长(%)基期报告期 甲乙丙50455045404815125试计算三种产品的产量总指数及由于产量变动而增加的总生产费用。解:产量总指数=160.4/145 = 110.62%,由于产量变动而增加的总生产费用=15.4(万元)21、某工业企业资料如下:指标六月七月八月九月工业总产值(万元)180160200190月末工人数(人)600580620600 试计算: (1)第三季度月平均劳动生产率; (2)第
21、三季度平均劳动生产率。解:(1)三季度月平均劳动生产率:=550/1800=0.306(万元/人)(2)三季度平均劳动生产率=30.306=0.92(万元/人)22、某百货公司各月商品销售额及月末库存资料如下:3月4月5月6月销售额180260280296库存额46655576计算第二季度平均每月商品流转次数和第二季度商品流转次数。解:(1)二季度月平均商品流转次数:=836/181=4.62(次)(2)二季度平均商品流转次数=34.62=13.86(次)23某地区1984年平均人口数为150万人,1995年人口变动情况如下:月份1369次年1月月初人数102185190192184计算:(1
22、)1995年平均人口数;(2)1984-1995年该地区人口的平均增长速度.解:(1)=181.21(万人)(2)=1.73%24某地区历年粮食产量资料如下:年份1995年1996年1997年1998年1999年粮食产量(万斤)300472560450700要求:(1)计算各年的逐期增长量、累积增长量、环比发展速度、定基发展速度;(2)计算1995年-1999年该地区粮食产量的年平均增长量和粮食产量的年平均发展速度;(3)如果从1999年以后该地区的粮食产量按8%的增长速度发展,2005年该地区的粮食产量将达到什么水平? 解:(1)年 份19951996199719981999粮食产量3004
23、72560450700增长量逐期累积-1728890250-172260150400发展速度()环比-157.33118.6480.36155.56定基-157.33186.67150233.33(2)年平均增长量=(700-300)/4=100(万斤) 平均发展速度=123.59%(3)=1110.81(万斤)25根据所给资料分组并计算出各组的频数和频率,编制次数分布表;根据整理表计算算术平均数。如:某生产车间40名工人日加工零件数(件)如下: 30 26 42 41 36 44 40 37 43 35 37 25 45 29 43 31 36 49 34 47 33 43 38 42 32
24、 25 30 46 29 34 38 46 43 39 35 40 48 33 27 28要求:(1)根据以上资料分成如下几组:2530,3035,3540,4045,4550。计算各组的频数和频率,编制次数分布表。 (2)根据整理表计算工人的平均日产零件数。解:(1)将原始资料由低到高排列: 25 25 26 27 28 29 29 30 30 31 32 33 33 34 34 35 35 36 36 37 37 38 38 39 40 40 41 42 42 43 43 43 43 44 45 46 46 47 48 49编制变量数列: 按日产量分组(件) 工人数(人) 各组工人所占比重
25、(%)25303035354040454550 7 8 9 10 6 17.5 20.0 22.5 25.0 15.0 合计 40 100.0(2)平均日产量=37.5(件/人)26根据资料计算算术平均数指标、计算变异指标比较平均指标的代表性。如:某车间有甲、乙两个生产组,甲组平均每个工人的日产量为36件,标准差为9.6件;乙组工人日产量资料如下:日产量(件)工人数(人)1525354515383413要求:(1)计算乙组平均每个工人的日产量和标准差; (2)比较甲、乙两生产小组哪个组的平均日产量更有代表性?解:(1)(件) (件) (2)利用标准差系数进行判断: 因为0.305 0.267故
26、甲组工人的平均日产量更有代表性。27采用简单重复抽样的方法计算平均数(成数)的抽样平均误差;根据要求进行平均数(成数)的区间估计。如:第一种例题:某工厂有1500个工人,用简单随机重复抽样的方法抽出50个工人作为样本,调查其月平均产量水平,资料如下: 日产量(件)524534540550560580600660 工人数(人)469108643要求:(1)计算样本平均数和抽样平均误差(重复与不重复)。 (2)以95.45%的可靠性估计该厂工人的月平均产量和总产量的区间。解:(1)样本平均日产量 = = 560(件)重复抽样: (件) 不重复抽样:4.51(件) (2)以95.45%的可靠性估计t
27、=1.96抽样极限误差 = 1.964.59 =9(件)月平均产量的区间: 下限: =560-9=551(件) 上限:=560+9=569(件)以95.45%的可靠性估计总产量的区间:(5511500826500件; 5691500853500件)第二种例题:采用简单随机重复抽样的方法,在2000件产品中抽查200件,其中合格品190件。要求:(1)计算合格品率及其抽样平均误差(2)以95.45%的概率保证程度(t=2)对合格品率和合格品数量进行区间估计。(3)如果极限误差为2.31%,则其概率保证程度是多少? 解:(1)样本合格率p = n1n = 190200 = 95% 抽样平均误差 =
28、 1.54%(2)抽样极限误差p= tp = 21.54% = 3.08%下限:p=95%-3.08% = 91.92%上限:p=95%+3.08% = 98.08% 则:总体合格品率区间:(91.92% 98.08%) 总体合格品数量区间(91.92%2000=1838件 98.08%2000=1962件) (3)当极限误差为2.31%时,则概率保证程度为86.64% (t=)28计算相关系数;建立直线回归方程并指出回归系数的含义;利用建立的方程预测因变量的估计值。如:某企业今年上半年产品产量与单位成本资料如下:月份产量(千件)单位成本(元)123456234345737271736968要
29、求:(1)计算相关系数,说明两个变量相关的密切程度。 (2)配合回归方程,指出产量每增加1000件时,单位成本平均变动多少? (3)假定产量为6000件时,单位成本为多少元?解:计算相关系数时,两个变量都是随机变量,不须区分自变量和因变量。考虑到要配和合回归方程,所以这里设产量为自变量(),单位成本为因变量()月份产量(千件)单位成本(元)123456234345737271736968491691625532951845041532947614624146216284219276340合 计2142679302681481 ()计算相关系数:说明产量和单位成本之间存在高度负相关。()配合回归方程 =-1.82 =77.37回归方程为:.产量每增加1000件时,单位成本平均减少.元()当产量为件时,即,代入回归方程:.(元)29计算总指数、数量指数及质量指数并同时指出变动绝对值、计算平均数指数。如:某商店两种商品的销售额和销售价格的变化情况如下:商品单位销售额(万元)2005年比2004年销售价格提高(%)2004年2005年甲乙米件12040130361012要求:(1)计算两种商品销售价格总指数和由于价格变动对销售额的影响绝对额。 (2)计算销售量总指数,计算由于销售量变动,消费者增加(减少)的支出金额。解:(1)商品销售价格总指数= 由于价
限制150内