不等式(组)中待定字母的取值范围.doc
《不等式(组)中待定字母的取值范围.doc》由会员分享,可在线阅读,更多相关《不等式(组)中待定字母的取值范围.doc(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date不等式(组)中待定字母的取值范围不等式(组)中待定字母的取值范围不等式(组)中待定字母的取值范围不等式(组)中字母取值范围确定问题,在中考考场中频频登场。这类试题技巧性强,灵活多变,难度较大,常常影响和阻碍学生正常思维的进行,为了更加快捷、准确地解答这类试题,下面简略介绍几种解法,以供参考。一. 把握整体,轻松求解 例1. (孝感市)已知方程满足,则( )A. B.
2、C. D. 解析:本题解法不惟一。可先解x、y的方程组,用m表示x、y,再代入,转化为关于m的不等式求解;但若用整体思想,将两个方程相加,直接得到x+y与m的关系式,再由x+y0转化为m的不等式,更为简便。+得,所以,解得故本题选C。二. 利用已知,直接求解 例2. (成都市)如果关于x的方程的解也是不等式组的一个解,求m的取值范围。解析:此题是解方程与解不等式的综合应用。解方程可得因为所以所以且;解不等式组得,又由题意,得,解得综合、得m的取值范围是 例3. 已知关于x的不等式的解集是,则m的取值范围是( )A. B. C. D. 解析:观察不等式及解集可以发现,不等号的方向发生了改变,于是
3、可知不等式的两边同时除以了同一个负数,即,所以。故本题选B。三. 对照解集,比较求解 例4. (东莞市)若不等式组的解集为,则m的取值范围是( )A. B. C. D. 解析:原不等式组可变形为,因为不等式的解集为,根据“同大取大”法则可知,解得。故本题选C。 例5. (威海市)若不等式组无解,则a的取值范围是( )A. B. C. D. 解析:原不等式组可变形为,根据“大大小小无解答”法则,结合已知中不等式组无解,所以此不等式组的解集无公共部分,所以。故本题选A。四. 灵活转化,逆向求解 例6. (威海市)若不等式组无解,则a的取值范围是( )A. B. C. D. 解析:原不等式组可变形为
4、,假设原不等式组有解,则,所以,即当时,原不等式组有解,逆向思考可得当时,原不等式组无解。故本题选A。 例7. 不等式组的解集中每一x值均不在范围内,求a的取值范围。解析:先化简不等式组得,由题意知原不等式组有解集,即有解,又由题意逆向思考知原不等式的解集落在x7的范围内,从而有或,所以解得或。五. 巧借数轴,分析求解 例8. (山东省)已知关于x的不等式组的整数解共有5个,则a的取值范围是_。解析:由原不等式组可得,因为它有解,所以解集是,此解集中的5个整数解依次为1、0、,故它的解集在数轴上表示出来如图1所示,于是可知a的取值范围为。图1 例9. 若关于x的不等式组有解,则a的取值范围是_
5、。解析:由原不等式组可得,因为不等式组有解,所以它们的解集有公共部分。在数轴上,表示数3a的点应该在表示数的点右边,但不能重合,如图2所示,于是可得,解得。故本题填。图2例10.如果不等式组的解集是,那么的值为 【分析】一方面可从已知不等式中求出它的解集,再利用解集的等价性求出a、b的值,进而得到另一不等式的解集【答案】解:由得;由得故,而故42a=0,=1故a=2, b=1故a+b=1例11.如果一元一次不等式组的解集为则的取值范围是(C)A B C D. 例12.若不等式组有解,则a的取值范围是( )A B C D【解析】本题考查一元一次不等式组的有关知识,由不等式组得,因为该不等式组有解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不等式 待定 字母 范围
限制150内