上海八年级上数学知识点.doc
《上海八年级上数学知识点.doc》由会员分享,可在线阅读,更多相关《上海八年级上数学知识点.doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date上海八年级上数学知识点数学(八年级上册)知识点总结第十六章 二次根式一、二次根式计算1、含有二次根号“”;被开方数a必须是非负数。2、性质:(1) (2) (3) ()(4) ()3、化简二次根式:把二次根式被开方数的完全平方因式移到根号外。例:。(字母因式由根号内移到根号外时,必须考虑字母因式隐含的符号)4、最简二次根式:化简后的二次根式需同时符合以下两个条件:被开
2、方数中各因式的指数都为1;被开方数不含分母。这样的二次根式叫做最简二次根式。将一个二次根式化成最简二次根式,有以下两种情况:如果被开方数是分式或分数(包括小数),先利用商的自述平方根的性质把它写成分式的形式,然后再分母有理化;如果被开方数是整式或整数,先将它分解因式或分解质因数,然后把能开方的因式或因数开出来,从而将式子化简。化二次根式为最简二次根式的步骤:把被开方数分解质因数,化为积的形式;把根号内能开方的的因数移到根号外;化去根号内的分母,若被开方数的因数中有带分数要化成假分数,小数化成分数。5、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二次根
3、式。例:、。(判断是不是同类二次根式:首先,要看它们是不是最简二次根式;其次,看这些最简二次根式的被开方数是否相同)6、二次根式的加法、减法:化简,化成最简二次根式;合并同类二次根(即将被开方数相同的二次根式的系数进行合并)7、二次根式的乘法、除法:先完成根号内乘除,再化简二次根式;小数化分数,带分数化假分数;字母需考虑取值范围(不要忽视隐含条件)。8、分母有理化:把分子和分母都乘以一个适当的代数式,使分母不含根号,这种计算叫做分母有理化。第十七章 一元二次方程一、 定义:只含有一个未知数,且未知数最高次数是二次的整式方程。二、 一般式:三、 一元二次方程的解法:1、 开平方法:一般来说,形如
4、、的一元二次方程可以用开平方法。(三种情况:有两个不相等的实数根,等于0,没有实数根)2、 因式分解法:提取公因式、公式法(平方差、完全平方公式)、十字相乘法、分组分解法。3、 配方法:移常数项;化二次项系数为1;配方,在方程的左右两边同时加上一次项系数一半的平方;用开平方法求解;结论。4、 公式法:先把方程化为一般形式;写出方程各项的系数a、b、c的值(要注意它们的符号);计算;当时,将a、b、c的值代入求根公式,求出方程的两个根;当0b0 y 0 x图像经过一、二、三象限,y随x的增大而增大。b0 y 0 x图像经过一、三、四象限,y随x的增大而增大。k0 y 0 x 图像经过一、二、四象
5、限,y随x的增大而减小b0时,图像经过第一、三象限,y随x的增大而增大;(2)当k0时,y随x的增大而增大(2)当k0时,y随x的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。 待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。 (1) 一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0。 (2) 求ax+b=0(a, b是常数,a0)的解,从“形”的角度看,求直线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海 年级 数学 知识点
限制150内