七年级数学下册复习知识点总结及典型习题(合肥寿春中学).doc
《七年级数学下册复习知识点总结及典型习题(合肥寿春中学).doc》由会员分享,可在线阅读,更多相关《七年级数学下册复习知识点总结及典型习题(合肥寿春中学).doc(79页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date七年级数学下册复习知识点总结及典型习题(合肥寿春中学)如何学好数学第六章 实 数一、知识总结(一)平方根与立方根1、平方根性质:正数的平方根有两个,且互为相反数;0的平方根为0;负数的没有平方根。 2、算术平方根 性质:(1)一个数a的算术平方根具有非负性; 即:0恒成立。 (2)正数的算术平方根只有1个,且为正数;0的算术平方根是0; 负数的没有算术平方根。 3、
2、立方根:性质:正数的立方根是1个正数;负数的立方根是1个负数;0的立方根是0。Example: 如果一个有理数的算术平方根与立方根相同,那么这个数是 ;如果一个有理数的平方根与立方根相同,那么这个数是 。(二)实数1、无理数:无限不循环的小数。(一个无理数与若干有理数之间的运算结果还是无理数)2、实数:有理数和无理数、零统称为实数。3、实数分类:(1)按定义分(略) (2)按正负性分(略)4、实数与数轴上的点一 一对应。5、实数的相反数、绝对值、倒数:(与有理数的相反数、绝对值、倒数意义类似)Example:的绝对值为 ,相反数为 ,倒数为 。6、实数的运算:实数与有理数一样,可以进行加、减、
3、乘、除、乘方运算,正数及零可以进行开平方运算,任意一个实数可以进行开立方运算,而且有理数的运算法则和运算律对于实数仍然适用。7、实数大小:(1)正数 0 负数; (2)两个负数相比,绝对值大的反而小;绝对值小的反而大。(3)数轴上不同的点表示的数,右边点表示的数总比左边的点表示的数大。实数比较大小的方法:作差法、平方法、作商法、倒数法、估值法Example:比较下列各组数的大小 二、解题实用 1、 2、 3、 三、 典题练习1、的平方根是 16 ;的算术平方根是 3 。2、如果一个有理数的算术平方根与立方根相同,那么这个数是 1、0 ;如果一个 有理数的平方根与立方根相同,那么这个数是 0 。
4、3、一个自然数的算术平方根是x,则与他相邻的下一个自然数的算术平方根是 x+1 。4、当x-1时,-x,和的大小关系 。6、比较下列各组数的大小 7、的绝对值为 ,相反数为 ,倒数为 。8、已知,y为4的平方根,求x+y的值。9、已知,求x2+y的平方根。10、如果一个非负数的平方根为2a-1和a-5,则这个数是 。11、a为的整数部分,b为的小数部分,则a+2b的值为 。12、若,试求的值。(提示:找出题中的隐含条件)第七章 一元一次不等式与不等式组一、 知识总结(一)不等式及其性质1、不等式:不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的
5、解是使不等式成立的未知数的值。二者的关系是:解集包括解,所有的解组成了解集。2、不等式的基本性质性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。即:如果,那么.性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。即:如果,并且,那么;.性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。即:如果,并且,那么;.性质4:如果,那么.(对称性)性质5:如果,那么.(传递性)(二)一元一次不等式1、定义:含有一个未知数,未知数的次数是1,且不等号两边都是整式的不等式, 叫做一元一次不等式。2.一元一次不等式的解法:根据是不等式的基本性质;一般步骤为:(1
6、)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)系数化为1.解不等式应注意:去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;移项时不要忘记变号;去括号时,若括号前面是负号,括号里的每一项都要变号;在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。 Example: 3.不等式的解集在数轴上表示:(1)边界:有等号的是实心圆圈,无等号的是空心圆圈;(2)方向:大向右,小向左(三)一元一次不等式组 1、定义:有几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组 2、一元一次不等式组的解法 1)分别求出不等式组中各个不等式的解集 2)利用数轴求出这些
7、不等式的解集的公共部分,即这个不等式组的解集。由两个一元一次不等式组成的不等式组的解集可归纳为下面四种情况: 不等式组解集口诀记忆同大取大同小取小大小小大中间找无解大大小小则无解Example:(四)一元一次不等式(组)解决实际问题 解题的步骤: 审题,找出不等关系 设未知数 列出不等式(组) 求出不等式的解集 找出符合题意的值 作答。Example:一次智力测验,有20道选择题,评分标准为:答对1题给5分,答错1题扣2分,不答不得分也不扣分,小明有2道题没有答,问至少答对几道题,总分才不低于60分?二、解题技巧一、 有解无解问题:(1)(2) (3) 2、 特征解问题: 解题步骤:把原式中的
8、要求的量(以下简记为) 当作已知数,去解原式得到原式的解(含)根据解的特征列出式子(关于的式子)解出的值。 例:已知的解集为,求的值。 解:解不等式 把当作已知数,去解原式 得 得到原式的解(含) 则 根据解的特征列出式子 解得 解出的值 三、典题练习1、 若关于的不等式有解,则的取值范围是?若无解呢?2、已知关于,的方程组的解满足,求的取值范围。3、适当选择a的取值范围,使1.7xa的整数解: (1)x只有一个整数解; (2)x一个整数解也没有。4、解不等式(组)(1) (2) (3)(4)562x3 (5)5、若m、n为有理数,解关于x的不等式(m21)xn6、已知关于x,y的方程组的解满
9、足xy,求p的取值范围。7、已知关于的不等式组的整数解共有3个,求的取值范围。8、已知A2x23x2,B2x24x5,试比较A与B的大小。9、已知a是自然数,关于x的不等式组的解集是x2,求a的值。10、某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10,那么商店最多降价多少元出售商品?11、某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件 5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元。在这 20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件。 (1)若此车间每天所获利
10、润为y(元),用x的代数式表示y。 (2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?12、某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座 客车的租金为每辆320元,60座客车的租金为每辆460元。 (1)若学校单独租用这两种客车各需多少钱? (2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省 租金,请选择最节省的租车方案。第八章 整式乘除与因式分解一、知识总结(一)幂的运算:1、同底数幂乘法:同底数幂相乘,底数不变,指数相加。2、同底数幂除法:同底数幂相除,底数不变,指数相减。3、幂的乘方:幂的乘方,底数不
11、变,指数相乘。4、积的乘方:积的乘方等于各因式乘方的积。注:(1)任何一个不等于零的数的零指数幂都等于1; (2)任何一个不等于零的数的-p(p为正整数)指数幂,等于这个数的p指数幂的倒数。 (3)科学记数法:或 绝对值小于1的数可记成的形式,其中,n是正整数,n等于原 数中第一个有效数字前面的零的个数(包括小数点前面的一个零)。(二)整式乘法:1、单项式的乘法法则2、单项式与多项式的乘法法则3、多项式与多项式的乘法法则(三)、完全平方公式与平法差公式1、完全平方公式: 两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的两倍。2、平方差公式: 两个数的平方之差等于这两个数的
12、和 与这两个数的差之积。(四)、整式除法(1)单项式的除法法则(2)多项式除以单项式的除法法则(五)、因式分解1、定义:把一个多项式化为几个因式的乘积的形式,叫做因式分解,也叫做把这个多项 式分解因式。2、分解因式的基本方法: (1)提公因式法 (2)公式法:运用完全平方公式和平方差公式 (3)对于二次三项式的因式分解的方法: 1)配方法,2)十字相乘法:公式 例:将因式分解。 方法一:配方法:原式= = 方法二:十字相乘法:= (4)分组分解法Example:3、分解因式的技巧:(1) 因式分解时,有公因式要先提公因式,然后考虑其他方法;(2)因式分解时,有时项数较多时,看看分组分解法是否更
13、简洁 (3)变形技巧: 符号变形 、 、当n为奇数时, 、当n为偶数时, 增项变形: 例: 拆项变形:例二、 典题练习1、计算题(1) (2) (3) (4) (5) (6)2、快速计算:(1) (2) (3)3、,求的值。 4、如果成立,那么 , 。5、在括号内填上指数和底数(1) (2) 6、化简求值:已知,求的值。7、已知,再求的值。8、已知,求代数式的值:(1) (2)9、因式分解:1) 2) 3)10、比较的大小。11、不解不等式组,求的值。 第九章 分 式一、 知识总结(一) 分式及其性质 1、分式 (1)分式=0分子=0,且分母0 (分式有意义,则分母0) (2)最简分式:分子和
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 七年 级数 下册 复习 知识点 总结 典型 习题 合肥 中学
限制150内