五年级奥数第13讲-最大公约数与最小公倍数.doc
《五年级奥数第13讲-最大公约数与最小公倍数.doc》由会员分享,可在线阅读,更多相关《五年级奥数第13讲-最大公约数与最小公倍数.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date五年级奥数第13讲-最大公约数与最小公倍数第13讲 最大公约数与最小公倍数(二)第13讲 最大公约数与最小公倍数(二)这一讲主要讲最大公约数与最小公倍数的关系,并对最大公约数与最小公倍数的概念加以推广。在求18与12的最大公约数与最小公倍数时,由短除法可知,(18,12)=23=6,18,12=2332=36。如果把18与12的最大公约数与最小公倍数相乘,那么(18,
2、12)18,12=(23)(2332)=(233)(232)=1812。也就是说,18与12的最大公约数与最小公倍数的乘积,等于18与12的乘积。当把18,12换成其它自然数时,依然有类似的结论。从而得出一个重要结论:两个自然数的最大公约数与最小公倍数的乘积,等于这两个自然数的乘积。即,(a,b)a,b=ab。例1 两个自然数的最大公约数是6,最小公倍数是72。已知其中一个自然数是18,求另一个自然数。解:由上面的结论,另一个自然数是(672)18=24。例2 两个自然数的最大公约数是7,最小公倍数是210。这两个自然数的和是77,求这两个自然数。分析与解:如果将两个自然数都除以7,则原题变为
3、:“两个自然数的最大公约数是1,最小公倍数是30。这两个自然数的和是11,求这两个自然数。”改变以后的两个数的乘积是130=30,和是11。30=130=215=310=56,由上式知,两个因数的和是11的只有56,且5与6互质。因此改变后的两个数是5和6,故原来的两个自然数是75=35和76=42。例3 已知a与b,a与c的最大公约数分别是12和15,a,b,c的最小公倍数是120,求a,b,c。分析与解:因为12,15都是a的约数,所以a应当是12与15的公倍数,即是12,15=60的倍数。再由a,b,c=120知, a只能是60或120。a,c=15,说明c没有质因数2,又因为a,b,c
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 奥数第 13 最大公约数 最小公倍数
限制150内